

LA NAPPE DES CALCAIRES DE CHAMPIGNY

Retrouvez les dernières éditions du Tableau de Bord de la nappe du Champigny sur notre site internet :

www.aquibrie.fr

Comité de rédaction du n°1 : Pauline Butel-Gomis et Véronique Jovy (Agence de l'Eau Seine Normandie), Nelly Simon (DIREN Ile-de-France), Eric Roche (Association des Irrigants Centre 77), Laurent Royer et Didier Chatté (Chambre d'Agriculture 77), Bruno Scialom (FDSEA 77), Alain Dectot (DDAF 77), Paul Leclerc (CG77/DEE), Cécile Broussard (CSP 77), Bernard Piot (SMIRYA), Bernard Schulze (UFC Que Choisir 77), Manon Zakéossian (Eau de Paris), Géraldine Boutillot et Jean-Pierre Gribet (Véolia CGE), Christian Lecussan (AFINEGE), Pierre Reygrobellet et Jean-Paul Feuardent (Lyonnaise des Eaux), Agnès Saïzonou (AQUI' Brie), Anne Reynaud (AQUI' Brie).

AQUI' Brie - Association de l'aquifère des calcaires de Champigny en Brie 145 quai Voltaire - 77190 DAMMARIE- LES- LYS contact@aquibrie.fr

Direction de la rédaction : Laurence Durance

Rédaction : Anne Reynaud

Secrétariat de rédaction et infographie : Laurence Durance

Impression: L'Atelier Graphique

© AQUI' Brie - Décembre 2022 ISSN 1951-8447

Sommaire

L'année 2019-2020 en résumé	4
Avant- propos	6
Pluviométrie : un hiver bien arrosé	12
Débit des rivières : des débits hivernaux supérieurs à la moyenne	14
Piézométrie : une bonne recharge de nappe sauf au nord-ouest	16
Pesticides dans les eaux superficielles : un changement de laboratoire qui complique les comparaisons	18
Qualité des eaux souterraines	20
Nitrates : des variations locales et une grande stabilité à l'échelle de la nappe	20
Triazines : sur le front des triazines historiques, rien de nouveau	22
Autres pesticides (hors triazines) : dans la nappe, la menace des pesticides actuels et de leurs métabolites	24
Micropolluants : solvants, plastifiants, médicaments détectés dans la nappe	26
Sélénium : relèvement du seuil de qualité pour le sélénium	28
Pressions : des ventes de S-métolachlore toujours en hausse	30
Pression des prélèvements : sur la ZRE Champigny, 91% du plafond prélevable a été prélevé en 2020	32
Annexe 1 : Calcul des indicateurs	35
Annexe 2 : Conventions SEQ-Eaux souterraines modifiées	38
Annexe 3 : Le réseau Quantichamp de suivi du niveau de la nappe	40
Annexe 4 : Les 612 pesticides recherchés dans les eaux superficielles (RCO et RID 77) en 2019-2020 par les laboratoires et limites de quantification	42
Annexe 5 : Les 162 pesticides quantifiés dans les eaux superficielles en 2019-2020 (20 stations du Réseau Contrôle Opérationnel) et les pourcentages de quantification	46
Annexe 6 : Les captages au Champigny des indicateurs de qualité 2019- 2020	48
Annexe 7 : Les 1095 paramètres recherchés dans les eaux souterraines (Brie et Champigny) en 2019-2020 et nombre d'analyses pour chacun des réseaux	50
Annexe 8 : Les 76 pesticides (hors triazines) quantifiés dans la nappe du Champigny en 2019-2020	58
Annexe 9 : Les 80 pesticides les plus vendus sur le territoire d'AQUI' Brie en 2020	59
Annexe 10 : Glossaire technique	60
Annexe 11 : Evolution graphique des indicateurs de 1999-2000 à 2019-2020	63
Annexe 12 : Tableau récapitulatif des indicateurs de 1999-2000 à 2019-2020	68
Annexe 13 : Organismes producteurs de données	70

L'année 2019-2020 en résumé

Cette année, notre période de référence s'élargit, puisque nous avons tenu compte des mesures faites sur la décennie allant de 2011 à 2020. Pour cette raison, vous verrez que les indicateurs de comparaison à la période historique changent.

Sur l'année 2019-2020, les pluies hivernales ont été importantes. L'hiver est une période de l'année où les pluies peuvent recharger efficacement la nappe

(pp. 12-13). On estime que sur l'année, la part d'eau de pluie qui a rechargé la nappe a été de 313 mm sur le territoire, et c'est l'une des meilleures valeurs mesurées depuis 1999.

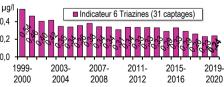
Si on se concentre sur le débit de l'Yerres à Courtomer (pp. 14-15),

on voit qu'il a été relativement élevé en 2019-2020 (2 m³/s en moyenne). Depuis 5 ans, ce débit fait le yo-yo, au gré d'alternance d'hivers secs ou humides.

Le niveau de remplissage de la nappe en fin d'année hydrologique est satisfaisant (pp. 16-17). Il y a eu de bonnes remontées

du niveau sur le territoire, à part dans la partie nord-Ouest (secteur Réveillon, Morbras, Hauldres).

Dans les petits cours d'eau briards, 162 pesticides ont été quantifiés en 2019-2020 (pp. 18-19), un chiffre en baisse par rapport à l'année précédente et qui s'explique notamment par un changement de laboratoire d'analyses en janvier 2020. 71% des substances quantifiées sont d'usage actuel, dont le glyphosate, métolachlore, dimétachlore, métazachlore et tous leurs produits de dégradation (liste des molécules en pp. 46-47).


D'après les 33 captages de l'indicateur, la concentration en nitrates reste stable dans la nappe (pp. 20-21). On aurait pu s'attendre à les

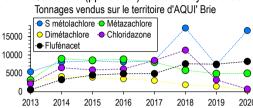
voir augmenter sous 40 l'effet de la bonne genéral favorable au 30 transfert des nitrates.

Pour ce qui est des 6 triazines interdites dès 2001 sur une partie du territoire compte tenu de leur présence dans les eaux de boisson, il aura fallu 20 ans pour voir diminuer de moitié le cumul de leur concentration dans la nappe (pp. 22-23). Et encore, nous n'intégrons pas dans ce

cumul la DEDIA, autre produit de dégradation 0,4 encore parcellaire, mais 0,2 dont la concentration peut dépasser le cumul des 6 triazines.

On a tendance à se désintéresser des triazines, d'une part parce que le mal est déjà fait, et d'autre part parce que le charbon actif

les élimine assez bien. Ce n'est pas le cas des produits de dégradation d'autres herbicides a c t u e l l e m e n t utilisés, comme le métolachlore,


le dimétachlore et le métazachlore, qui vont nécessiter des coûts supplémentaires de traitement. Ils sont désormais en tête des 76 substances quantifiées dans la nappe, en fréquence de quantification et en concentration (liste page 58). 77% des matières actives (ou leur produit de dégradation) quantifiées dans la nappe sont autorisés et il est donc possible d'agir pour limiter leur présence.

Vous trouverez en pp 26-27, un balayage des autres micropolluants recherchés et trouvés dans la nappe du Champigny par l'agence de l'eau, Eau de Paris et Eau du Sud Parisien (liste des paramètres recherchés en page 50). Des traces de médicaments, plastifiants, cosmétiques, hydrocarbures qui doivent nous faire prendre conscience que la prévention ne concerne pas que les seuls pesticides et que nous sommes tous concernés pour réduire à la source la diffusion des micropolluants dans l'environnement. Les stations d'épuration ne sont pas conçues pour tout traiter.


Grâce à diffusion des ventes de pesticides au code postal des acheteurs, on peut essayer d'anticiper les contaminations futures au vu des contaminations présentes et des tendances de vente. Ainsi, on est inquiet sur le devenir des métabolites du S-métolachlore dans les

sols et les nappes, quand on voit que les ventes de la substance mère sont en hausse. Au total, 210 substances actives ont été vendues en 2020 sur le territoire d'AQUI' Brie (pp. 30-31). Et en moyenne sur

les 3 dernières années connues (2018-2020), cela représente 396 ¹⁰⁰⁰⁰ tonnes/an.

Les volumes prélevés en 2020 dans la nappe du Champigny au sens large sur le périmètre d'AQUI' Brie sont, d'après les déclarations, de 64,9 millions de m³, soit près de 178 000 m³/jour. Sur la Zone de Répartition

en Eau Champigny, les pompages représententes 91% du plafond prélevable. Sachant que les volumes autorisés

sont souvent supérieurs aux volumes prélevés, il n'y a quasiment plus aucune marge de manœuvre pour accueillir de nouvelles demandes. S'il y a presque autant de captages destinés à l'Alimentation en Eau Potable (AEP) qu'à l'irrigation, 87% des volumes pompés sont pour l'AEP et 7% pour l'irrigation. Ce bilan global masque des disparités sur le territoire car les pompages AEP sont concentrés sur la partie Ouest, et les pompages agricoles plutôt sur la partie Est et centrale.

Graphiques d'évolution des indicateurs en pp 63-67

Avant-propos

UNE INFORMATION PARTAGEE

La protection et le partage équitable d'une ressource commune passe par une mise en commun des connaissances. De nombreux acteurs produisent des données relatives à la nappe des calcaires de Champigny, en fonction de leurs champs d'interventions et de leurs domaines de compétences. Ces informations sont essentielles car elles permettent de suivre l'évolution de la ressource tant sur le plan qualitatif que quantitatif.

La mise en œuvre d'actions de protection et d'une gestion raisonnée de la nappe des calcaires de Champigny nécessite de disposer d'une culture commune et d'une vision globale de l'état de la nappe.

Dans ce contexte, il est apparu nécessaire de centraliser toutes ces données et de les valoriser dans un document unique et compréhensible par tous.

L'association AQUI' Brie a été missionnée pour réaliser un tableau de bord annuel de la nappe des calcaires de Champigny. Pour cela, un comité de suivi s'est constitué. Composé notamment des structures productrices de données, il a permis de définir dans la concertation les indicateurs et la forme du document ainsi que le contenu du premier numéro.

Ce numéro s'inscrit dans la continuité des précédents. Il rassemble les données issues de nombreux réseaux de mesures de différents partenaires dont :

- Météo France pour la pluviométrie et l'évapotranspiration ;
- la DRIEAT lle-de-France pour le débit des rivières ;
- le BRGM, le Conseil Départemental de Seine-et-Marne, Eau de Paris et Eau du Sud Parisien pour la piézométrie (réseau Quantichamp);

- l'Agence de l'Eau Seine-Normandie et le Conseil Départemental de Seine-et-Marne pour la qualité des eaux de surface;
- l'Agence de l'Eau Seine Normandie, le ministère de la santé, le Conseil Départemental de Seine-et-Marne, Eau du Sud Parisien, Veolia, le SEDIF et Eau de Paris pour la qualité des eaux souterraines (réseau Qualichamp);
- l'UNIFA pour la quantité de fertilisants azotés minéraux livrée en Seineet-Marne ;
- la Chambre d'Agriculture de Seine-et-Marne pour des informations agricoles;
- l'Agence de l'Eau Seine-Normandie pour les volumes déclarés ;
- l'Office français pour la Biodiversité pour les ventes de pesticides au code postal de l'acheteur (BNV-d).

LES CLES DE LECTURE

Dans ce numéro, nous avons passé en revue 11 paramètres : la pluviométrie, le débit des rivières, le niveau de la nappe, la contamination en pesticides des eaux superficielles, la qualité des eaux souterraines avec en particulier les teneurs en nitrates, en sélénium, en triazines, les autres pesticides quantifiés, d'autres micropolluants organiques tels que les OHV, PCB... En fin d'ouvrage, seules deux pressions qui s'exercent sur la nappe ont été abordées. Il s'agit des ventes de pesticides et des prélèvements d'eau dans la nappe.

Le tableau de bord annuel de la nappe des calcaires de Champigny est né de la coopération de nombreux acteurs de l'eau. N'hésitez pas à nous faire part de vos remarques (contact@aquibrie.fr), afin que ce document réponde au mieux à vos attentes.

UNE PRESENTATION SIMPLIFIEE

Le tableau de bord annuel de la nappe des calcaires de Champigny se veut être un outil de travail. Bien conscient de la complexité d'un tel document, nous avons voulu en faciliter la lecture par une présentation uniforme des chapitres.

Chaque paramètre fait l'objet d'un chapitre. Pour chaque paramètre, trois éléments sont analysés selon les données disponibles : le contexte de l'année en cours par rapport aux quarante dernières années suivies (1979 à 2020), l'évolution du paramètre dans l'année en cours et la répartition spatiale du paramètre sur le périmètre d'activité d'AQUI' Brie. Chaque chapitre se présente sous la forme d'une double page composée d'illustrations en regard d'une page de commentaire.

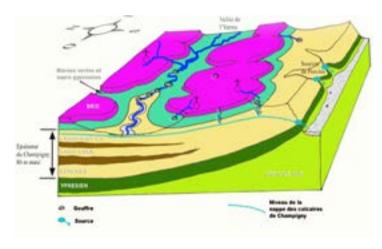
Dans le même souci d'explication et de vulgarisation, vous trouverez en annexe un glossaire des termes techniques.

LES INDICATEURS

Lorsque les paramètres sont suivis de manière homogène dans le temps, et que l'évolution des recherches ne biaisent pas l'interprétation des résultats, nous faisons figurer un ou plusieurs indicateurs. Ces informations chiffrées permettent de suivre d'une année à l'autre le paramètre étudié. Le choix et le mode de calcul des indicateurs sont expliqués en annexe, pp. 36-37. En début du document figure un résumé des principaux indicateurs de l'année hydrologique étudiée et de leur évolution depuis le démarrage du tableau de bord en 1999. L'historique de tous les indicateurs est repris en fin de document, sous forme de tableaux et de graphiques.

LE CHOIX DE LA PERIODE

La nappe des calcaires de Champigny se recharge d'octobre à avril et se vidange le reste de l'année. Pour respecter le cycle de la nappe et rendre compte des processus hydrogéologiques qui s'y jouent, le tableau de bord se cale donc sur une année hydrologique : d'octobre à septembre de l'année civile suivante, à l'exception des volumes pompés dans la nappe, qui sont diffusés par année civile.


UN PATRIMOINE COMMUN D'INTERET REGIONAL

La nappe des calcaires de Champigny est l'un des réservoirs aquifères majeurs d'Ile-de-France. Elle alimente en eau potable un million de Franciliens, dont une majorité de Seine-et-Marnais. Une partie de l'eau souterraine, moins de 10% des prélèvements, est également utilisée pour satisfaire des besoins industriels et agricoles.

UN AQUIFERE MULTICOUCHE

Cet aquifère est constitué d'une succession de couches sédimentaires relativement récentes à l'échelle des temps géologiques (50 à 60 millions d'années environ). Encadré à sa base par la craie d'âge crétacé supérieur et à son sommet par les marnes vertes et supra-gypseuses et les calcaires de Brie, l'aquifère du Champigny est complexe. Il est composé des niveaux aquifères de l'Yprésien (quand il est sableux), du Lutétien, du Saint-Ouen et du Champigny sensu-stricto. Cet empilement de couches sédimentaires a pris le nom de nappe des calcaires de Champigny en référence à son niveau supérieur.

UNE INTERACTION AVEC LES EAUX DE SURFACE

La nappe est alimentée en partie par l'infiltration des eaux de surface dans des secteurs localisés où les couches sédimentaires imperméables sus-jacentes (marnes vertes et supra-gypseuses) ont partiellement ou totalement été érodées et dans les zones poinçonnées par des gouffres.

Ainsi, plus que tout autre aquifère, la qualité des eaux souterraines est étroitement liée à celle des cours d'eaux. Soumise aux pressions croissantes liées à l'activité humaine (prélèvements, pollutions d'origines diverses, exploitation des calcaires de Champigny), la qualité de la nappe des calcaires de Champigny se dégrade et son niveau baisse de façon inquiétante les années de faible recharge hivernale.

LA MOBILISATION DES ACTEURS

Dans les années 90, les difficultés d'approvisionnement en eau potable — d'abord liées à un problème quantitatif (en 1992-1993) puis à une dégradation de la qualité — ont poussé les acteurs et usagers de la nappe à se mobiliser autour de cette ressource, dans le cadre d'un Comité des Usagers en 1994, puis dans celui d'un Contrat de nappe et d'une Charte des Usagers en 1997.

Cette concertation a abouti à la création en juillet 2001 de l'association de l'aquifère des calcaires de Champigny en Brie, dénommée AQUI' Brie, par le Conseil Régional d'Ile-de-France, le Conseil Départemental de Seine-et-Marne, l'Agence de l'Eau Seine- Normandie et l'Etat.

AQUI' BRIE

En 2021, elle regroupe une trentaine de membres parmi lesquels :

- le Département de Seine-et-Marne, le Département de l'Essonne, l'Agence de l'Eau Seine Normandie ;
- le préfet de Seine-et-Marne et les services de l'Etat : DRIEAT-IF, DRIAF, ARS 77, DDT 77, l'Agence Française pour la Biodiversité ;
- l'Union des Maires 77, la Ville de Melun, le SYAGE (porteur du SAGE de l'Yerres);
- Eau du Sud Parisien, Veolia, Eau de Paris, SEDIF;
- la Chambre d'agriculture de Région Ile de France, la FDSEA 77, les JA 77, la Coordination rurale 77, l'association des Irrigants du Centre Brie, le GAB Ile-de-France ;
- AFINEGE (représentant les industriels usagers de la nappe), Total Energies, l'UNICEM (représentant les carriers exploitant les calcaires de Champigny);
- Nature Environnement 77, UFC Que Choisir N0 77;
- le BRGM :
- SNCF Réseau et Mobilités

Le territoire de compétence d'AQUI' Brie : 221 communes en Seine-et-Marne, Essonne et Val-de-Marne

Les principales missions d'AQUI' Brie sont :

- Une vision patrimoniale pour la nappe du Champigny
 - Améliorer les connaissances sur le Champigny et ses relations avec la nappe superficielle du Brie et celle de l'Yprésien, plus profonde.
 - Préparer le territoire au Changement Climatique, en concertation avec les acteurs locaux et grâce au modèle mathématique (Projet Champigny 2060).
 - Porter des actions de protection de la nappe auprès de publics agricoles et non agricoles.
- La participation aux démarches de protection des captages prioritaires (Grenelle, SDAGE, sensibles,...).

LA RECONQUETE DU BON ETAT DU CHAMPIGNY

Le bon état quantitatif

Le bilan des prélèvements dans la nappe depuis 1999, le suivi du niveau de la nappe au travers du réseau de surveillance Quantichamp, l'amélioration de la connaissance de la structure du réservoir et des relations nappe-rivières, la mise au point d'un outil de modélisation de l'hydrodynamique du Champigny ont permis à AQUI' Brie de pointer la surexploitation de la nappe et de cerner les leviers d'action pour retrouver une nappe en équilibre. Les pouvoirs publics ont notamment acté en 2009 une baisse des autorisations de prélèvements de 164 000 m³/jr à 140 000 m³/jr sur la Zone de Répartition des Eaux

(ZRE). Cette diminution des volumes prélevés dans le secteur en tension (Cf. Zone de répartition des eaux, page 32) ainsi qu'une répartition plus équilibrée de cette ressource entre usagers a porté ses fruits. Depuis 2013, à la faveur de conditions climatiques plus favorables, le niveau de la nappe est remonté, levant depuis cette date les différentes restrictions pour les usagers situés dans la Zone de répartition des eaux. Si le bon état quantitatif est pour l'instant atteint, il faut néanmoins rester vigilant car l'état de la ressource est toujours très dépendant du climat, susceptible de changer dans les années à venir.

Le bon état qualitatif

En matière de prévention, l'objectif d'AQUI' Brie est de réduire la pollution à la source. Cela passe donc par des changements de pratiques des utilisateurs des polluants principaux de la nappe à savoir les nitrates et les pesticides.

Dès 2002, AQUI' Brie a donc commencé à mobiliser les utilisateurs de pesticides et notamment d'herbicides à usage non agricole ; successivement, la mobilisation s'est adressée aux gestionnaires de l'entretien des routes, des voies ferrées, des espaces publics communaux, puis des golfs. A compter de 2006, la mobilisation et l'accompagnement vers des pratiques moins consommatrices d'engrais et de pesticides se sont adressés aux agriculteurs du bassin versant amont de l'Ancoeur.

Quelques résultats fin 2021 :

- 93% des 221 communes du territoire sont mobilisées vers le 0 phyto avec en moyenne 97% de réduction des herbicides (hors biocontrôles) utilisés pour entretenir la voirie, les espaces verts et sportifs, le cimetière... 141 communes sont au 0 phyto sur l'ensemble de leurs espaces ;
- 81 communes ont été accompagnées avec des essais d'appropriation ou réaménagement de cimetière depuis 2014. Pour aider au mieux les collectivités, 8 essais de végétalisation sur cimetière ont été réalisés en 2021 ;
- Objectif zéro phyto atteint sur les routes départementales et nationales. Les infrastructures publiques routières sont entretenues sans herbicides. AQUI' Brie accompagnent d'autres gestionnaires d'infrastructures de transport (aérodrome et autoroute) dans la réduction de l'usage des phytosanitaires ;
- Poursuite du suivi de 11 des **12 golfs diagnostiqués** et accompagnement vers la réduction d'usage des produits phytopharmaceutiques et de la quantité d'eau ;
- Mise en œuvre du **Contrat de Territoire Eau et Climat Champigny** qui regroupe 18 signataires, 5 plans d'actions de protection de captages (Fosse de Melun/ basse vallée de l'Yerres, Nangis, Centre Brie, Dagny Bannost et Voulzie Durteint Dragon) et le plan d'actions transversales.

Diagnostic des pratiques d'entretien des espaces publics

L'un des 4 aménagements auto-épurateurs de Rampillon (77)

Fig. 1: Pluviométrie annuelle aux 5 stations suivies

Fig. 3: Indicateurs pluie et recharge aux 5 stations depuis 1999

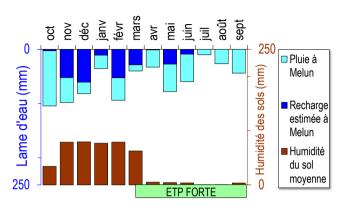


Fig. 2 : Pluie, recharge estimée et réserve des sols mensuelles à Melun en 2019-2020 (ETP = EvapoTransPiration)

W

Indicateurs pluviométriques

Pluviométrie moyenne annuelle sur le territoire : 754 mm

Ecart entre la pluie à Melun de l'année et la moyenne sur 50 ans (667 mm): + 38 mm

Recharge moyenne estimée sur le périmètre d'AQUI' Brie: 313 mm

Ecart entre la recharge estimée à Melun et la moyenne sur 50 ans (165 mm): +80 mm

'étude de la pluviométrie est un élément incontournable pour comprendre le fonctionnement d'une nappe d'eau souterraine. La pluie est en effet le moteur de l'aquifère, celui qui va également pousser les polluants jusqu'à la zone noyée.

Sur l'année hydrologique 2019-2020, les cumuls de pluie ont été comme souvent hétérogènes sur le territoire, (fig. 1) avec une partie est et nord plus arrosée (surtout Cerneux et Poigny), et un secteur central et ouest beaucoup plus sec. D'après ces 5 stations, il est tombé en moyenne 754 mm de pluie sur le territoire, ce qui est la 3^{ème} meilleure pluviosité depuis 20 ans (fig. 3).

Mais comptabiliser la pluie tombée sur le territoire (en bleu clair sur les graphiques) ne suffit pas à savoir comment la nappe s'est rechargée. Pour savoir cela, il faut en soustraire la part qui a été consommée par les plantes à la belle saison (par EvapoTransPiration), et celle qui a imbibé les sols secs. La « recharge estimée », en bleu foncé sur les graphiques, c'est donc la part de pluie susceptible d'atteindre la nappe (détails de notre calcul en annexe 1, page 36).

Quand on regarde la répartition des pluies dans l'année hydrologique (fig. 2), on voit qu'elles sont bien tombées d'octobre à décembre 2019. Malgré un mois de janvier sec, les sols ont été saturés en eau entre novembre et mars, ce qui a permis aux pluies tombées à cette période de recharger efficacement la nappe. Le mois d'avril très sec aurait pu signer la fin de la saison de recharge de la nappe. C'était sans compter les pluies à nouveau importantes en mai et juin. Si elles ont surtout profité à la végétation, elles ont quand même pu générer encore un peu de recharge pour la nappe, parce que les pluies intenses ont tendance à ruisseler même sur des sols secs, et donc à rejoindre les

cours d'eau d'où elles peuvent localement recharger la nappe, via les zones infiltrantes.

D'après les 5 stations Météo-France qui nous servent à faire le bilan (fig. 3), la recharge estimée sur l'ensemble du territoire a été très bonne en 2019-2020 (313 mm). C'est le double de l'année précédente et encore mieux que l'année 2017-2018! Cela fait 7 ans que les pluies efficaces pour la nappe « font le yoyo », d'une année à l'autre.

Et si on remonte encore dans le passé, grâce aux données de la station Melun-Villaroche suivie depuis 50 ans (fig. 4), on voit qu'une recharge comme celle de l'hiver 2019-2020, était assez courante entre 20 et 40 ans, et qu'elle est devenue beaucoup plus rare par la suite.

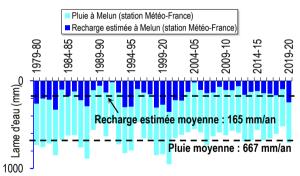


Fig. 4 : Pluie annuelle et recharge estimée à Melun de 1979 à 2020

La pluie est tombée en abondance l'hiver, c'est-à-dire au meilleur moment pour recharger efficacement la nappe. Cela fait 7 ans que la recharge fait le yoyo, et qu'on alterne entre de bonnes et de mauvaises recharges.

Des débits hivernaux supérieurs à la moyenne

Fig. 1 : Localisation des stations DRIEAT et des zones de pertes définies par les jaugeages (traits rouges)

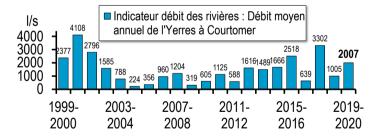


Fig. 2 : Débit annuel moyen de l'Yerres mesuré à Courtomer de 1983 à 2020

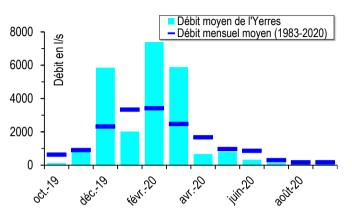


Fig. 3 : Débit mensuel de l'Yerres mesuré à Courtomer en 2019-2020 par rapport à la moyenne 1983-2020

Indicateurs débit de l'Yerres

Débit annuel moyen de l'Yerres à Courtomer en 2019-2020 : 2007 l/s

Ecart entre cette valeur et la moyenne de 1983 à 2020 (1437 l/s) : + 570 l/s

••••••

omme la nappe des calcaires de Champigny se recharge pour partie grâce aux pertes en rivière, le suivi des débits des rivières donne une autre image de l'infiltration probable des eaux superficielles vers la nappe et de l'entraînement des polluants. On utilise pour cet indicateur, le suivi de débit effectué par la DRIEAT-Ile-de-France sur 2 petits cours d'eau parcourus de zones de pertes : l'Yerres à Courtomer et l'Ancoeur à Blandy (localisation sur fig. 1).

En 2019-2020, le débit moyen annuel de l'Yerres à Courtomer, principal cours d'eau du territoire, a été de 2007 l/s. C'est 570 l/s de plus que la moyenne mesurée depuis 1983 (1 437 l/s). Sur la figure 2, on peut une nouvelle fois apprécier à quel point les années se suivent et ne se ressemblent pas !

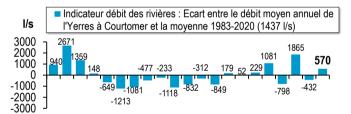


Fig. 4 : Indicateur débit depuis 1999 (écart entre le débit moyen annuel de l'Yerres à Courtomer et la moyenne de 1983-2020)

Regardons à présent comment le débit du cours d'eau a varié chaque mois (fig. 3), ce qui traduit comment son bassin versant a « encaissé » les pluies tombées (fig. 2 de la page 12). Le débit est resté inférieur à la moyenne en octobre, malgré les pluies abondantes : à cet instant, ce sont la végétation et les sols qui ont absorbé l'eau. En décembre,

le débit est plus du double de la moyenne, car les pluies de novembre et décembre sont tombées sur un sol cette fois gorgé d'eau. C'est la période où les drains agricoles évacuent cet excédent d'eau et viennent grossir les débits des cours d'eau. Dès que la pluie s'arrête, en janvier, le débit de l'Yerres passe sous la moyenne. Il devient à nouveau supérieur à la moyenne en février-mars, avec le retour de pluies abondantes et parce que la nappe superficielle du Brie est alors pleine et s'évacue dans la rivière. La sécheresse du mois d'avril a eu une répercussion immédiate sur les cours d'eau, dont les débits se sont effondrés.

Et pour terminer, on a enregistré comme l'année précédente de brefs épisodes de pluies intenses en mai (jusqu'à 57 mm à Melun les 9-10 mai) et début juin (jusqu'à 42 mm à Nangis du 3 au 5 juin) qui ont réactivé les drains agricoles. Lors de la crue de mai, on a ainsi mesuré dans l'Ancoeur (station Jarrier d'AQUI' Brie) un pic de 117 mg/l de nitrates! La fin de l'année hydrologique est conforme à l'habitude, avec des cours d'eau qui s'assèchent progressivement, soutenus par les sources de la nappe du Brie et par les rejets industriels et de stations d'épuration.

2019-2020 est une année de bon débit, avec des mois excédentaires en décembre, février et mars. Avec le mois d'avril particulièrement sec, l'azote apporté n'a pu migrer vers les cultures. Les pluies de mai ont occasionné une chasse de ces nitrates vers les cours d'eau.

Une bonne recharge de nappe sauf au nord-ouest

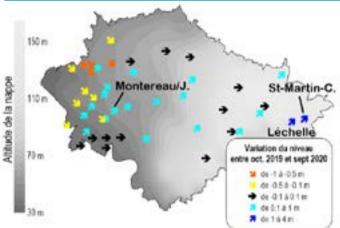


Fig. 1 : Variation du niveau de la nappe entre octobre 2019 et 2020 sur les piézomètres du réseau Quantichamp



Fig. 2 : Niveau de la nappe à Montereau-sur-le-Jard et Saint Martin-Chennetron de 1979 à 2020

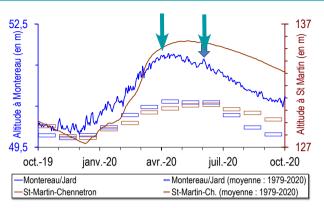


Fig. 3 : Piézométrie journalière à Montereau-sur-le-Jard et Saint Martin-Chennetron en 2019-2020

W

Indicateurs piézométriques

Variation du niveau de la nappe à Montereau-sur-le-Jard :

+ 0,4 m

Variation du niveau de la nappe à Saint-Martin-Chennetron :

+ 4 m

Durée moyenne de la recharge : 138 jours

Indicateur piézométrique (sur une échelle de 0 à 100) : 58

es plus anciens suivis du niveau de la nappe des calcaires de Champigny sont issus des 9 piézomètres du réseau du ministère de l'Ecologie, équipés entre les années 1960 et 1990. Saint-Martin-Chennetron et Montereau-sur-le-Jard (fig.1) notamment, fonctionnent sans grosse défaillance depuis un demi-siècle et sont représentatifs du fonctionnement de la nappe.

Dans la partie Est, Saint-Martin-Chennetron est un secteur naturellement drainé par des sources. Le niveau de la nappe y fluctue avec une amplitude qui atteint 26 mètres, au rythme des recharges hivernales (fig. 2), avec de très bonnes années comme 2014, 2016 et 2018, entrecoupées de moins bonnes comme 2017 et 2019. Dans la partie Ouest, au niveau de Montereau/Jard, l'amplitude de la nappe est plus réduite (8 mètres), et ses variations sont impactées par de nombreux pompages utilisés pour l'Alimentation en Eau Potable francilienne. Le plafonnement des prélèvements sur cette partie de la nappe a permis de récupérer, année après année, un niveau moyen. En 2019-2020, grâce à une bonne recharge hivernale, on reste dans des niveaux moyens de nappe, bien loin de la situation connue à la fin des années 2000.

Dans le détail (fig. 3), on voit que le niveau de la nappe commence à remonter à Montereau/Jard aux derniers jours de novembre (soit une date de démarrage dans la moyenne) jusqu'au mois d'avril. Pendant la période de décrue qui s'en suit, on voit bien le signal des pluies du 9-10 mai (flèche bleue), qui ont généré des transferts d'eau jusqu'à la nappe. Ce sont alors des eaux très chargées en nitrates qui se sont infiltrées. A St-Martin-Chennetron, la recharge est comme toujours un peu décalée. Elle a démarré de manière plus précoce que d'habitude, dès la mi-décembre pour s'achever courant mai.

La durée moyenne de la recharge sur ces 2 piézomètres a été de 138 jours (contre 131 en moyenne depuis 1999, indicateurs en annexe, page 63), et quand on fait le bilan sur l'année hydrologique, du 1^{er} octobre 2019 au 30 septembre 2020, la nappe a gagné 40 cm à Montereau et 4 mètres à Saint Martin.

A l'échelle du territoire, sur les 44 piézomètres exploitables du réseau Quantichamp (fig. 1 et nom des piézomètres p. 40), 25% ont enregistré une baisse du niveau, comprise entre 16 et 91 cm, et cela concerne la partie nord-ouest de la nappe, au droit des bassins versant du Réveillon (Chevry-Cossigny, Marolles-en-Brie), du Morbras (Roissy-en-Brie) et du ru des Hauldres (Combs-la-Ville). Les variations inférieures à 10 cm concernent une large partie du territoire. Les plus forts gains concernent la partie orientale de la nappe, la plus réactive (Léchelle et Saint-Martin-Chennetron).

L'indicateur piézométrique de remplissage de la nappe (fig. 4 et mode de calcul page 36) est de 58 sur l'année.

Fig. 4 : Evolution de l'indicateur piézométrique depuis 1999

A l'exception du secteur nord-ouest de la nappe (Réveillon, Morbras), le bilan de l'année est positif pour la nappe, dont le remplissage s'est amélioré.

Un changement de laboratoire qui complique les comparaisons

Fig. 1: Indicateur pesticides eaux superficielles depuis 2002

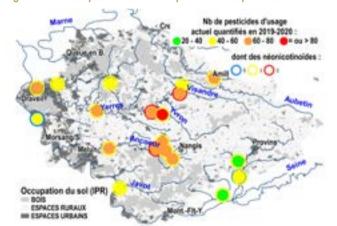


Fig. 2 : Nombre de pesticides différents d'usage actuel quantifiés (dont les néonicotinoïdes) aux 20 stations suivies par l'AESN

Indicateur Eaux superficielles

Nombre de pesticides quantifiés :

162 sur 611 recherchés par l'AESN

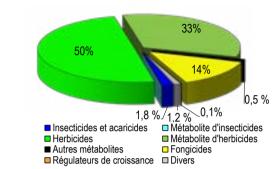


Fig. 3 : Cibles des pesticides quantifiés en 2019- 2020 sur les 20 stations suivies par l'AESN

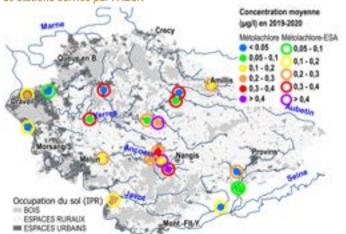


Fig. 4 : Concentrations moyennes en métolachlore et l'un de ses métabolites (entre 1 et 9 recherches selon les stations)

QUI' Brie exploite ici les suivis de pesticides effectués par l'Agence de l'Eau Seine-Normandie (RCO-RCS). Notre indicateur est basé sur les 20 stations de petits cours d'eau suivies chaque année par l'AESN depuis 2002.

Le laboratoire d'analyse a changé au cours de l'année hydrologique : Eurofins a recherché 470 pesticides fin 2019 et CARSO 529 début 2020, soit un total de 611 pesticides recherchés en 2019-2020 par l'AESN (contre 471 en 2019-2020), avec des limites de quantification qui changent (tableau en pp 42-45). A noter que 8 substances quantifiées par Eurofins ne sont plus recherchées par CARSO (comme les métabolites du flufénacet). 162 ont été quantifiés en 2019-2020, contre 188 l'année précédente (fig. 1). Cette baisse est en partie liée au changement de laboratoire car les limites de quantification de CARSO sont plus élevées que celles d'Eurofins.

Les matières actives d'usage autorisé et leurs produits de dégradation constituent la majeure partie de ce qui est quantifié (71%). Les 29% restant sont des vestiges d'anciens usages, que les sols continuent à évacuer, en tête desquels l'atrazine et des métabolites. Les herbicides et leurs produits de dégradation sont majoritaires (83% des quantifications, fig. 3), devant les fongicides (14%) et insecticides (2%). Parmi les substances les plus souvent quantifiées (pp. 46-47), on trouve en tête l'AMPA, produit de dégradation du glyphosate et de détergents, les produits de dégradation du métolachlore, dimétachlore et métazachlore. En concentration moyenne des quantifications, on trouve en tête un produit de dégradation du chlorothalonil, peu souvent quantifié mais à forte dose (1,15 μ g/l), l'AMPA (1 μ g/l), suivi du glyphosate (0,4 μ g/l), du S-métolachlore (0,34 μ g/l), de la métamitrone (0,3 μ g/l), herbicide davantage utilisé depuis l'interdiction

de la chloridazone.

Si l'atrazine et ses métabolites restent très souvent quantifiées, c'est désormais à des concentrations moyennes inférieures à 0,02 µg/l. Ces substances disparaissent enfin des cours d'eau (sauf s'ils sont alimentés par des sources de la nappe du Champigny !).

Les cours d'eau agricoles du centre de la Brie sont ceux où l'on quantifie la plus grande variété de pesticides (et/ou métabolites) d'usage actuel, entre 35 et 80 différents selon les stations (fig.2) : 80 dans l'Yvron, 79 dans l'amont du Courtenain et 75 dans l'Yerres à Courtomer. Parmi eux, on a fait apparaitre le nombre de néonicotinoïdes (insecticides) quantifiés. Ils ont été interdits en 2018 et ré-autorisés en 2021, d'abord en traitement de semence de la betterave. L'imidaclopride est quasiment retrouvé partout, la clothianidine et le thiacloprid sont plus rares.

Nous faisons cette année un focus sur le métolachlore, herbicide très utilisé au printemps, et l'un de ses produits de dégradation (métolachlore-ESA) qui pose problème aux captages. La molécule mère est surtout quantifiée au printemps, après son application. Le métabolite est quantifié plutôt l'hiver, quand les drains le relarguent, avec des concentrations qui dépassent souvent celles de la molécule mère (fig. 4).

*Mode de calcul en annexe 1.3, page 36

La baisse du nombre de pesticides quantifiés sur les 20 stations suivies par l'AESN s'explique en partie par le changement de laboratoire en cours d'année. 71% des substances quantifiées sont d'usage actuel, dont le glyphosate, métolachlore, dimétachlore, métazachlore et tous leurs produits de dégradation.

Nitrates : des variations locales et une grande stabilité à l'échelle de la nappe

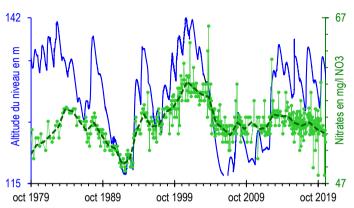


Fig. 1 : Evolution de la piézométrie et des concentrations en nitrates depuis 1979 dans le secteur des sources du Provinois

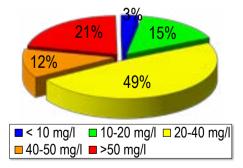


Fig. 3 : Répartition des captages du réseau Qualichamp selon leurs concentrations maximales en nitrates en 2019-2020



Fig. 2 : Concentrations maximales en nitrates mesurées dans la nappe en 2019-2020 et variations de ces teneurs depuis 1999

Indicateur eaux souterraines nitrates

Moyenne des concentrations en nitrates

sur la base de 33 captages : 34 mg/l

Solubles dans l'eau, les nitrates constituent aujourd'hui une cause majeure de pollution de la nappe des calcaires de Champigny, avec une origine essentiellement agricole dans le contexte de la Brie céréalière. Dans les secteurs vulnérables, les grandes périodes de transfert des nitrates jusqu'à la nappe sont synchrones des périodes de recharge. C'est ce que l'on voit sur la source de la Vicomté, l'une des sources du Provinois suivie par Eau de Paris depuis un siècle (fig.1): jusqu'au début des années 2010, la concentration en nitrates de la source augmentait de 3 à 4 mg/l les années de forte recharge. Ces augmentations sont désormais plus modestes les hivers pluvieux, en lien possible avec les actions préventives qui y sont menées. Si le début de la recharge de l'hiver 2019-2020 a entrainé en février 2020 un bref pic à 59 mg/l, les concentrations tendent globalement à diminuer.

Sur la carte des concentrations maximales mesurées en 2019-2020, (fig. 2), les concentrations dépassent les 50 mg/l au Sud-est vers Provins et au Nord-Est sur les bassins versants de l'Aubetin, de l'Yvron et de la Visandre. Ce sont les secteurs de la nappe les plus vulnérables parce que les calcaires qui contiennent la nappe affleurent en surface, et ne sont pas protégés des pollutions. Eloignés des secteurs les plus vulnérables, mais néanmoins sous leur influence, les captages de la fosse de Melun ont des concentrations en nitrates comprises entre 30 et 39 mg/l. Dans la basse vallée de l'Yerres, les concentrations vont de 22 à 42 mg/l, pour les captages les moins protégées de la surface. Par rapport à la situation au début des années 2000, les teneurs ont baissé pour 36% des captages, ont augmenté pour 23% et sont stables (+/-3 mg/l) pour les autres.

L'indicateur nitrates est calculé sur la base de 33 captages suivis

depuis 20 ans. Il est de 33,7 mg/l pour l'année 2019-2020, soit une valeur très proche de l'année précédente (34). Les concentrations restent supérieures à 40 mg/l pour un tiers des captages de l'indicateur (fig. 3), soit une proportion assez constante depuis 20 ans (historique page 68). Cet indicateur est basé essentiellement sur des captages restés en service, ce qui donne une vision plus optimiste de l'état de la nappe. Sur les 19 captages abandonnés (cercles noirs sur la fig. 2) où le suivi a repris poursuit, la concentration relevée est de 38 mg/l.

Fig. 4: Evolution de l'indicateur depuis 1999

L'indicateur nitrates, basé sur les concentrations maximums mesurées sur 33 captages, reste stable.

Sur le front des triazines historiques, rien de nouveau

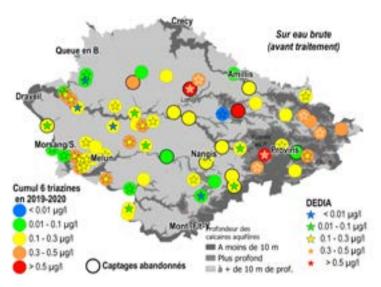


Fig. 1: Cumul en 6 triazines et concentrations en DEDIA en 2019-2020

Indicateur eaux souterraines triazines

Moyenne des concentrations en triazines

sur la base de 31 captages : 0,24 µg/l

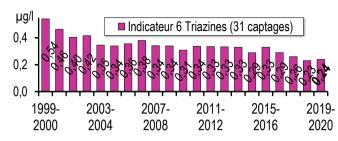


Fig. 2 : Evolution de l'indicateur 6 triazines depuis 1999

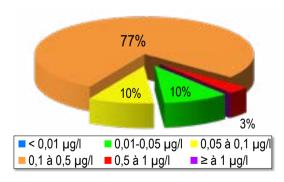


Fig. 3 : Répartition des concentrations maximales en triazines en 2019-2020 aux 31 captages de l'indicateur

erbicides massivement utilisés en usage agricole comme non agricole jusqu'en 2003, les triazines constituent aujourd'hui une pollution de fond de la nappe.

En 2019-2020, les laboratoires ont recherché 19 triazines, principalement des produits de dégradation de l'atrazine et de la terbuthylazine, et en ont quantifié 10. Le tableau ci-dessous permet d'apprécier leur fréquence de quantification et les concentrations moyennes aux 31 captages de l'indicateur. En tête, on trouve la déséthylatrazine, premier produit de dégradation de l'atrazine, quantifiée à tous les captages. Vient ensuite la Déisopropyl-déséthylatrazine (DEDIA), métabolite issu de la dégradation de l'atrazine et de la terbuthylazine. Sur quelques sources provinoises, la concentration en DEDIA dépasse régulièrement le cumul des 6 triazines, sans qu'on soit pour l'instant en mesure de l'expliquer.

Présence aux 31 captages de l'indicateur	Nombre de recherches	Pourcentage de quantification	Concentration moyenne (µg/l)
Atrazine déséthyl	156	100	0,16
DEDIA	103	94	0,15
Atrazine	156	94	0,05
2-hydroxy atrazine	137	72	0,02
Simazine	156	81	0,01
Hydroxyterbuthylazine	84	55	< 0,01
Atrazine déisopropyl	154	68	0,01
Terbuthylazine désethyl	149	3,4	< 0,01
Propazine 2-hydroxy	63	3,2	< 0,01
Terbuthylazine	155	0,6	< 0,01

Sur la carte, les ronds représentent pour chaque captage le cumul des concentrations de ces 6 triazines au cours de l'année. La contamination

des eaux souterraines reste généralisée dans tous les secteurs de la nappe. Nous avons figuré par des étoiles les concentrations mesurées en DEDIA, qui ne sont pas prises en compte dans le cumul, car pas encore recherchée partout. Au captage abandonné de Lumigny, il y a presque autant de la seule DEDIA que du cumul des 6 triazines de l'indicateur. Si on la prenait en compte, la teneur en DEDIA y ferait quasiment doubler le cumul des triazines.

La présence de 6 triazines est suivie dans les nappes depuis 20 ans (atrazine, terbuthylazine, simazine, cyanazine, et 2 produits de dégradation, la déséthylatrazine et la déisopropylatrazine), ce qui permet d'évaluer l'évolution de leur présence aux 31 captages où elles ont été recherchées tous les ans (mode de calcul page 38). On peut voir sur la figure 2 qu'il aura fallu près de 20 ans, pour voir les teneurs de ces 6 triazines « historiques » diminuer de moitié dans la nappe, de 0,54 en 1999-2000 à 0,24 µg/l en 2019-2020 sur les 31 captages suivis. Pour les ¾ des captages de cet indicateur, le cumul des 6 triazines est désormais compris entre 0,1 et 0,5 µg/l (cf. évolution de la répartition page 65).

La terbuthylazine, interdite comme l'atrazine en 2003 a été réautorisée sur maïs et à nouveau utilisée depuis le printemps 2018. Elle n'a pas été quantifiée cette année, ou alors à de faibles concentrations qui peuvent être le vestige des usages passés. Les impacts de cette réautorisation restent à suivre...

Il n'y a pas grand-chose de nouveau à dire sur les triazines, dont on a tendance à se désintéresser aujourd'hui, d'une part parce que le mal est déjà fait, et d'autre part parce que leur traitement sur charbon actif permet de rendre l'eau potable. Ce précédent n'a malheureusement pas suffit à prévenir de nouvelles contaminations.

Dans la nappe, la menace des pesticides actuels et de leurs métabolites

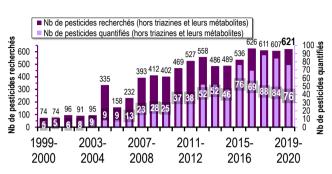


Fig. 1 : Evolution du nombre de pesticides (hors 6 triazines) recherchés et quantifiés depuis 1999

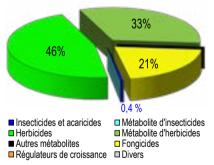


Fig. 2 : Cibles des pesticides quantifiés dans la nappe du Champigny en 2019-2020

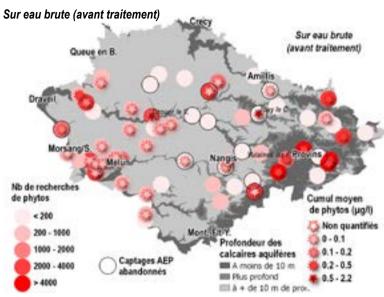


Fig. 3 : Pesticides (autres que les triazines et leurs métabolites) les plus fréquemment quantifiés en 2019-2020 dans la nappe

W

Indicateurs phytos autres que triazines

Nombre de pesticides quantifiés : 76 sur 621 recherchés (hors 6 triazines et leurs métabolites)

Nombre de quantifications de pesticides dans la nappe des calcaires de Champigny : 1805 sur 97 873 recherches (hors 6 triazines et métabolites)

Acôté de la pollution historique en triazines, d'autres pesticides sont recherchés dans les eaux brutes (avant potabilisation) par 7 réseaux de suivi. Au total, près de 100 000 recherches de pesticides ont été effectuées en 2019-2020, sur 105 captages au Champigny (voir en p. 68 l'évolution depuis 20 ans). Ces réseaux ont des objectifs, et donc des logiques, différents en termes de fréquence, de nombre de captages et de pesticides analysés (Tableau ci-dessous).

Analyses 2019-2020	alyses 2019-2020 AESN AQBrie ARS		ARS	Autosurveillance			
bancarisées	AESIN	CD77	EDP	SEDIF	SUEZ	VEOLIA	
Nb de captages suivis	12	47	105	5	7	19	15
Nb d'analyses phyto (hors triazines)	31 409	4 680	32 760	28 134	98	466	326
Nb de phytos recherchés (hors triazines)	494	621	65	390	11	18	30
Nb de phytos quantifiés (hors triazines)	51	13	76	52	1	4	0

Sur les 621 pesticides (autres que les triazines) recherchés (détail pp. 50-58), 76 ont été quantifiés au moins une fois (fig. 1) sur 63 captages au Champigny. Il y a des différences importantes avec l'année précédente, et elles ne s'expliquent pas par des évolutions analytiques, les laboratoires n'ayant pas changé. 26 pesticides quantifiés en 2018-2019 ne l'ont pas été cette année, notamment des urées substituées comme le nicosulfuron. Al'inverse, 18 pesticides quantifiés cette année n'avaient pas été trouvés l'an passé.

La part d'herbicides et métabolites d'herbicides reste prépondérante (78% des quantifications), loin devant les fongicides (21%), insecticides (0,4%) et autres cibles (fig. 2). 77% des quantifications de pesticides (ou de leurs produits de dégradation) concernent des substances dont l'usage est autorisé.

Parmi les 76 pesticides quantifiés dans les eaux brutes (liste en p. 58), les plus souvent quantifiés restent les produits de dégradation du métolachlore, dimétachlore et du métazachlore, 3 herbicides d'usage agricole autorisés depuis les années 70-80, mais qui sont davantage utilisés ces dernières années. Ces métabolites sont retrouvés y compris dans les eaux distribuées, mais sur la base des données rassurantes fournies par leur fabricant, l'ANSES a relevé en 2022 leur seuil de dangerosité. Un « répit » qui pourrait n'être que temporaire, si le métolachlore se révélait être un perturbateur endocrinien. Viennent ensuite 3 matières actives devenues au fil du temps une pollution de fond, au même titre que l'atrazine, même si c'est en moindre concentration : la chloridazone (interdite en 2020), la bentazone (autorisée) et l'oxadixyl (interdit en 2003). Le glyphosate et l'AMPA ne sont quasiment pas retrouvés aux captages, uniquement sur un captage en lien direct avec la surface, en janvier 2020, période propice à leur transfert.

Sur les 95 résultats d'analyse dépassant les 0,1 µg/l sur eau brute (concentration max dans le tableau p. 58), 70% concernent 2 métabolites, du métolachlore (forme -ESA jusqu'à 1,2 µg/l) et du dimétachlore (forme -CGA jusqu'à 0,5 µg/l). Les concentrations en chloridazone sont faibles en comparaison (maximum de 0,04 µg/l), pour cet herbicide interdit en 2020. Néanmoins le pire est probablement à venir car ses métabolites sont déjà retrouvés dans d'autres régions betteravières comme le Grand Est. La carte fait en premier lieu apparaitre la variabilité du suivi entre les captages. C'est au captage d'Ozouer le Voulgis, sous l'influence des pertes de l'Yerres et par ailleurs régulièrement suivi par l'Agence de l'Eau, qu'on mesure le cumul le plus important (0,9 µg/l).

→ Quand on met de côté la pollution historique en triazines, ¾ des pesticides quantifiés dans la nappe sont des substances autorisées ou leurs produits de dégradation. Ceux-ci inquiètent car ils sont mal éliminés par les filières de traitement.

Solvants, plastifiants, médicaments détectés dans la nappe

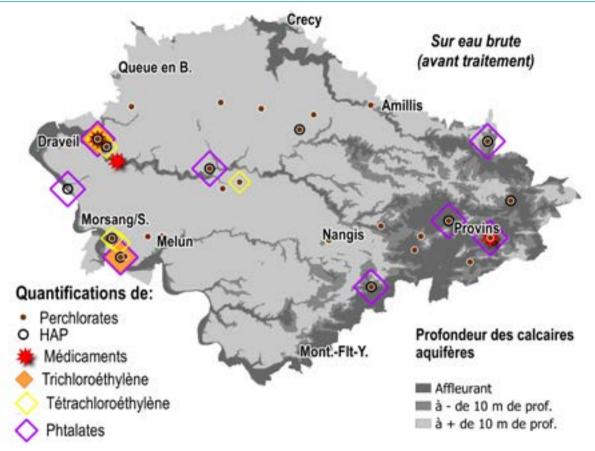


Fig. 1 : Quantifications de micropolluants en 2019-2020

es micropolluants autres que les pesticides sont diversement recherchés par les réseaux de suivis. Hormis les **OHV** et les **PCB** qui sont largement recherchés, on se base ici beaucoup sur les analyses de l'Agence de l'eau, Eau du Sud Parisien et Eau de Paris qui réalisent 86% des recherches sur 33 captages.

Les Organo Halogénés Volatiles (OHV), sont des contaminants de longue date de la nappe des calcaires de Champigny : 9 ont été quantifiés sur les 39 recherchés dont en premier lieu le tétrachloréthène (de 0,2 à 6,3 μ g/l) et le trichloroéthylène (de 0,3 à 2,2 μ g/l). Cette pollution touche la partie occidentale, où se concentrent les activités industrielles.

Sur les 23 Hydrocarbures Aromatiques Polycycliques (**HAP**) recherchés, 12 ont été quantifiés, partout sur le territoire. Ce sont les composants des carburants qu'on retrouve aujourd'hui dans tous les compartiments du sol et du sous-sol. Parmi les 36 PCB (PolyChloro-Biphéniles) recherchés par l'Agence ou l'ARS, des traces de PCB 153 (0,0004 µg/l) et de PCB 180 (0,0003 µg/l) ont été quantifiées.

Sur les 17 **médicaments** et 4 hormones recherchés, 3 ont été très ponctuellement quantifiés. Un producteur d'eau a retrouvé 0,006 μ g/l de carbamazépine (anti-épileptique et psychotrope) et 0,56 μ g/l de paracétamol (antalgique) en avril 2020 sur 2 captages vulnérables bordant l'Yerres. Il n'y a pas d'indice pour relier cette quantification de paracétamol à la crise COVID, d'autant qu'on ne voit pas d'augmentation des teneurs dans les cours d'eau briards à partir de mars 2020. Un autre producteur a dosé 0,05 μ g/l d'acide salicylique, notamment antiseptique et anti-verrue.

Les **phtalates** sont des perturbateurs endocriniens, qui peuvent être présents dans les cosmétiques, produits d'entretien ménagers, jouets, peintures... Sur les 16 recherchés à 17 captages, 3 ont été quantifiés,

le plus courant est le Di(2-ethylhexyl)phthalate (DEHP), un additif plastifiant considéré comme dangereux. Les concentrations vont de 0,3 (à proximité de l'Yerres) à 5,5 µg/l (Provinois). Le n-Butyl Phtalate a été quantifié 4 fois, entre 0,08 et 0 12 µg/l et le Diheptyl phtalate une fois.

Les stations d'épuration sont les principaux émetteurs d'**alkylphénols** (nonylphénols et Octylphenols), substances reprotoxiques. Sur les 16 alkylphénols recherchés, seul le bisphénol S a été quantifié dans la fosse de Melun (0,038 µg/l). Sur les 45 chlorophénols recherchés, seul le Méthylphénol-4 (ou para-cresol) a été quantifié 4 fois dans le Provinois, entre 0,03 et 0,09 µg/l. Ce para-crésol est bactéricide et utilisé comme désinfectant.

Les perfluorocarbures (**PFC**) rentrent dans la composition de nombreux produits industriels et domestiques, L'Agence de l'eau en a recherché 7 sur sa campagne du printemps 2020, et en a quantifié 5, plutôt dans la partie occidentale (0,0002 à 0,015 μ g/l). Les 33 chlorobenzènes et 26 benzènes recherchés cette année n'ont pas été quantifiés, pas plus que 19 PBDE (retardateurs de flamme), 10 aldéhydes et 22 anilines. Finissons avec les **perchlorates**, éléments persistants dans l'environnement dont l'origine probable en Beauce et Brie serait les engrais chiliens (étude BRGM RP 64 840). Ils sont recherchés désormais sur 54 captages, et quantifiés sur tout le territoire, entre 0,5 et 3 μ g/l, à part sur le captage de Vulaines-les-Provins où ils dépassent 10 μ g/l.,

Solvants, plastifiants, médicaments, détergents, ces micropolluants de notre vie quotidienne terminent dans la nappe. Comme les stations d'épuration ne peuvent tout retenir, tout le monde est concerné pour limiter, autant que possible, leur usage.

Relèvement du seuil de qualité pour le sélénium

sur la base de 2 captages : 32 µg/l

e sélénium est un oligo-élément indispensable à l'homme en petites quantités mais toxique s'il est trop absorbé. C'est un minéral constitutif de la croute terrestre, et présent dans certains aliments comme les huitres ou le thon. En lle-de-France, il est parfois quantifié dans les eaux souterraines au-dessus de 10 mg/l, seuil d'exigence de qualité fixé par le ministère de la Santé. A noter qu'à partir de 2023, ce seuil de qualité passe de 10 à 20 µg/l, voire 30 mg/l en cas de conditions géologiques particulières.

Les analyses de roche réalisées par le BRGM (Gourcy L., 2011, RP-60061-FR) ont montré que le sélénium s'est naturellement concentré dans trois dépôts riches en argiles et matières organiques situés à la base (Yprésien), au milieu (marnes infraludiennes) et au sommet (marnes supra-gypseuses) de l'aquifère des calcaires de Champigny. La remobilisation du sélénium présent dans les couches géologiques dépend de multiples facteurs : débit d'exploitation de l'ouvrage, conditions d'oxydo-réduction, spéciation du sélénium sous des formes Se4+ ou Se6+ plus ou moins mobiles, mélange entre plusieurs aquifères diversement enrichis en sélénium, etc... Dans la Brie. l'étude du BRGM a identifié différents modes d'enrichissement des eaux souterraines en sélénium. Par exemple, le pompage dans un forage qui recoupe et dénoye un des niveaux géologiques riches en sélénium comme celui des marnes situées entre Champigny strict et Saint-Ouen, peut induire un « relargage » du sélénium dans les eaux pompées. Ailleurs, ce sont les eaux de sources traversant le niveau inférieur de l'Yprésien qui s'enrichissent en sélénium avant de se réinfiltrer dans la craie.

Sur la figure 1 sont représentées les concentrations moyennes en sélénium en 2019-2020 sur 69 ouvrages captant tout ou partie de la

nappe du Champigny. On voit que les teneurs dépassent 5 μ g/l dans le secteur Nord-Est du Champigny, avec un lien sur l'enrichissement en sélénium des couches géologiques de ce secteur du bassin parisien. Les concentrations dépassent les 10 μ g/l au forage de Beautheil (51 μ g/l) et de Dagny (12 μ g/l) qui captent les eaux issues du Saint-Ouen, juste en-dessous, donc d'un niveau riche en sélénium, mais aussi au Sud-Ouest, à Saint Fargeau (15 μ g/l), en limite de la nappe de Beauce.

L'indicateur sélénium est basé sur 2 captages qui captent des eaux riches en sélénium, Beautheil et Dagny mais en 2019-2020 il n'y a qu'une seule analyse car l'analyse du printemps n'a pu être faite à cause de la crise sanitaire. On se gardera dans ces conditions à commenter l'évolution des teneurs.

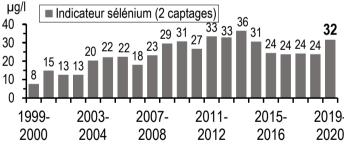


Fig. 2 : Evolution de l'indicateur sélénium depuis 1999

L'indicateur sélénium est basé sur 2 captages qui captent des eaux riches en sélénium (Beautheil et Dagny). Il est moins fiable cette année car basé sur seulement une analyse à chacun.

Des ventes de S-métolachlore toujours en hausse

Fig. 1: Vente d'azote vers la Seine-et-Marne

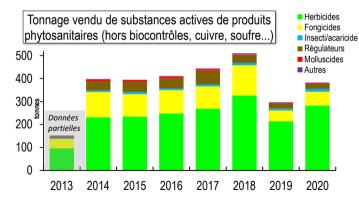


Fig. 2 : Ventes de pesticides sur le territoire d'AQUI' Brie (hors produits bio-contrôles, soufre, cuivre,...)

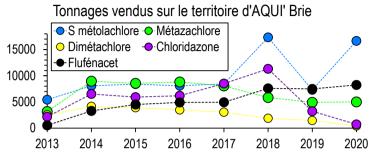


Fig. 3 : Evolution des ventes sur le territoire d'AQUI' Brie de 5 herbicides à enieu pour la nappe

M Indicateurs pression azotée et phytosanitaires

Quantité d'azote vendue et/ou livrée¹ en Seine-et-Marne : 22 821 tonnes

Quantité de pesticides vendus sur le territoire d'AQUI' Brie (moyenne 2018 - 2020) : 396 tonnes

210 pesticides vendus sur le territoire d'AQUI' Brie en 2020

Les rejets des stations d'épuration dans les cours d'eau

On estime à 13 g/jr/hab les rejets en azote total (essentiellement sous forme d'azote organique et ammoniacal), soit 4 460 t/an pour les 939 000 habitants du territoire (données INSEE 2019). Les stations d'épuration ayant un rendement épuratoire moyen de l'azote de 80 % (données SATESE 77), on peut estimer qu'elles rejettent dans le milieu naturel de l'ordre de 892 tonnes d'azote/an. Cette évaluation est surestimée puisque les eaux usées de la frange ouest urbanisée sont exportées sur Valenton et Evry, donc hors Champigny.

Les ventes d'azote sur la campagne agricole 2019-2020

Pour la campagne 2019-2020, le tonnage d'azote livré en Seineet-Marne¹ est de 22 821 contre 33 596 tonnes lors de la campagne précédente (fig. 1). Pour que cet indicateur soit fiable, il faudrait que les données de vente soient diffusées au code postal de l'acheteur, comme les produits phytosanitaires.

Les ventes de produits phytosanitaires

Les données de ventes annuelles de produits phytosanitaires sont désormais diffusées au code postal de l'acheteur tous usages confondus (agricole et non agricole, professionnels et particuliers), avec 2 précautions d'usage. Premièrement le siège social de déclaration d'achat n'est pas forcément le lieu d'épandage. Cet effet de bordure est toutefois limité pour un bilan sur une zone aussi vaste que le territoire d'AQUI' Brie. Deuxièmement ce qui est vendu n'est pas obligatoirement utilisé sur l'année car soumis à d'autres arbitrages (trésorerie, évolution de la redevance pollution diffuse...). Ainsi, en 2018, les acheteurs ont eu tendance à stocker les produits phytosanitaires, pour anticiper la hausse de la redevance pour

pollutions diffuses au 1er janvier de l'année suivante (fig. 2).

Pour lisser cet effet, l'indicateur est la moyenne des tonnages vendus en 2018, 2019 et 2020, soit 396 tonnes (hors produits de biocontrôles, cuivre, soufre...). Les herbicides y représentent 70% des ventes, devant les fongicides (19%), régulateurs de croissance (7%), insecticides (2,7%), molluscides (0,5%) et autres (0,9%).

En 2020, 210 substances phytosanitaires ont été vendues, un chiffre en baisse à mesure que les substances les plus toxiques sont interdites (il y en avait 246 en 2014). Les 15 substances les plus vendues représentent 71% du tonnage total (tableau des 80 premiers en annexe 9, page 59). Il s'est par exemple vendu en 2020 73 tonnes de prosulfocarbe, herbicide qui détrône symboliquement le glyphosate (61 tonnes).

La figure 3 concerne les ventes de 5 herbicides préoccupants pour la nappe. On a parlé dans les pages précédentes de la présence des métabolites de métolachlore, dimétachlore et métazachlore aux captages, et il est préoccupant de voir les ventes en S-métolachlore augmenter ces dernières années. La chloridazone quant à elle a été interdite en 2020, alors que les ventes ne cessaient de croitre. On attend de voir comment le stock accumulé dans les sols va désormais s'évacuer et si la découverte de ses métabolites ne va pas prochainement défrayer la chronique. Enfin on s'inquiète déjà des risques de contamination par les métabolites du flufénacet, dont les ventes ne cessent d'augmenter.

1 : Voir page 38 sur la représentativité des chiffres transmis par l'UNIFA

Si le nombre de pesticides vendus diminue, avec l'interdiction progressive de certains mutagènes, cancérigènes et reprotoxiques, les tonnages vendus restent élevés, notamment d'herbicides.

Sur la ZRE Champigny, 91% du plafond prélevable a été prélevé en 2020

2019

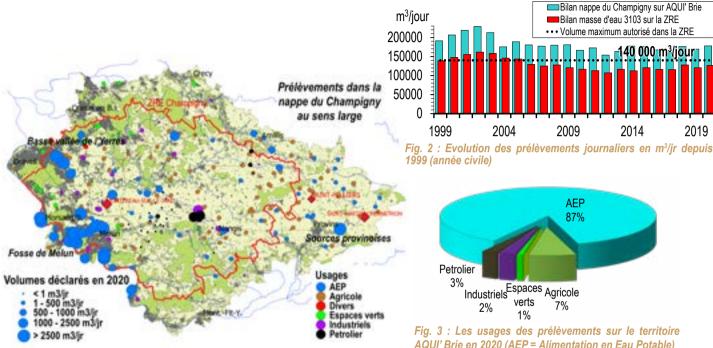


Fig. 1 : Volumes déclarés en 2020 dans la nappe des calcaires de Champigny sur le territoire de compétence d'AQUI' Brie et sur la Zone de Répartition des Eaux (ZRE), rapportés à la journée

AQUI' Brie en 2020 (AEP = Alimentation en Eau Potable)

Indicateur prélèvements

Prélèvement journalier moyen sur le territoire

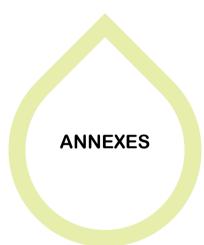
d'AQUI' Brie en 2020 : 177 802 m³

eu profonde et à l'origine de bonne qualité, la nappe des calcaires de Champigny s'est avérée surexploitée au début des années 2000. Les travaux de concertation menés par AQUI' Brie avec les usagers de la nappe ont abouti à la définition en 2009 d'un plafond de prélèvement de 140 000 m³/jour, sur la Zone de Répartition des Eaux (périmètre en rouge sur fig.1). Ce chiffre a été inscrit dans le SDAGE dans l'objectif d'atteindre le bon état quantitatif de la nappe. L'Etat a depuis révisé les autorisations de prélèvement AEP et alloué un volume pour l'irrigation, que l'Organisme Unique pour la Gestion Collective (OUGC Champigny) répartit entre les irrigants.

Le bilan des prélèvements dans la nappe est établi d'après les données de redevances transmises par l'Agence de l'Eau, qui sont plus complètes que les informations de la BNPE.

La carte (fig. 1) montre la répartition des prélèvements sur 222 points de prélèvements déclarés dans la nappe en 2020 sur le territoire d'AQUI' Brie, dont 86 captages AEP, 81 forages agricoles et 34 forages industriels ou pétroliers. 15 forages pour l'arrosage des espaces verts sont répertoriés, le plus souvent par des golfs. Il est probable que davantage sont exploités, avec de petits volumes, par les collectivités.

Dans le secteur Est, le gros prélèvement correspond aux sources provinoises exploitées par Eau de Paris. Elles drainent naturellement cette partie orientale de la nappe. Sur la frange Ouest de la nappe, les prélèvements pour l'Alimentation en Eau Potable sont concentrés dans la basse vallée de l'Yerres (champs captants de Périgny, Mandres et Combs-la-Ville exploités par SUEZ), et dans la fosse de Melun (champs captants d'Arvigny, ChampiSud, Boissise-la-Bertrand, exploités respectivement par le SEDIF, SUEZ et VEOLIA). Les prélèvements


industriels et pétroliers se concentrent dans le secteur de Grandpuits.

Le volume prélevé en 2020 dans la nappe du Champigny au sens large sur le périmètre d'AQUI' Brie est évalué à 64,9 millions de m³, soit près de 178 000 m³/jour. C'est une augmentation de 8 500 m³/jr par rapport à 2019 (fig. 2, en bleu). Elle s'explique par une augmentation des pompages pour l'AEP (+ 4 % soit + 5 700 m³/jr), et l'irrigation agricole (+ 27 % soit + 2 700 m³/jr). La tendance est toujours à la baisse pour l'usage industriel (- 500 m³/jr).

A l'échelle de la nappe et sur l'année, l'usage AEP reste majoritaire même si sa part diminue très légèrement au fil du temps (87%, fig. 3), devant les usages agricole (7%), industriels (2,3%) et pétroliers (2,3%). Ce bilan global masque des disparités dans le temps (si les pompages AEP sont assez constants, les pompages agricoles ont lieu pour la plupart entre avril et octobre) et surtout dans l'espace (avec l'abandon de nombreux captages AEP sur la zone orientale, l'usage agricole peut représenter le pourcentage majoritaire, sur la période d'irrigation).

Les prélèvements dans la masse d'eau 3103 (Champigny et Brie) sur la Zone de Répartition des Eaux Champigny (fig. 2, en rouge) sont en 2019 de 46,3 millions de m³/an, soit 127 200 m³/jour et donc 91% du plafond prélevable.

Sur la ZRE Champigny, les pompages déclarés représentent désormais 91% du plafond prélevable. Sachant que les volumes autorisés sont souvent supérieurs aux volumes prélevés, il n'y a quasiment plus aucune marge de manœuvre pour accueillir de nouvelles demandes.

ANNEXE 1 - CALCUL DES INDICATEURS

1 - LA RECHARGE ESTIMEE

Les données journalières de pluviométrie et de demande en eau des plantes (évapotranspiration) mesurées par Météo-France permettent d'estimer grossièrement par jour la part d'eau de pluie qui ruissellera, sera utilisée par la plante, stockée dans le sol ou infiltrée vers la nappe (par drainance verticale ou élimination par les drains). Toutes ces valeurs s'expriment en mm de lame d'eau sur une surface unitaire.

Ce calcul est journalier et nécessite de fixer la quantité d'eau maximale stockable par le sol. Tant que cette valeur n'est pas atteinte, toute pluie sert d'abord à la reconstituer et à alimenter les plantes, même dans un sol drainé. Une fois que ce stock est reconstitué, il y a de l'infiltration efficace vers la nappe (c'est-à-dire infiltration verticale directe ou plus généralement mise en charge des drains agricoles qui vont alimenter les rus puis la nappe via les pertes en rivières). Cette quantité d'eau maximale stockée dans le sol a été obtenue par calages successifs, en calculant la recharge pour des valeurs croissantes de stock maximum d'eau dans le sol, puis en comparant ces recharges à la réaction réelle de la nappe, enregistrée au niveau des piézomètres voisins. Le stock maximum d'eau dans le sol a été évalué à 80 mm sur la partie occidentale et centrale de la nappe (Melun-Nangis) et à 95 mm dans le secteur oriental (Sourdun). Ce stock maximum d'eau dans le sol est une valeur moyenne qui intègre des occupations de sols variées sur le bassin versant de la nappe et ne doit donc pas être comparé à la notion de réserve utile des sols qu'évaluent finement agronomes et agriculteurs à l'échelle d'une parcelle.

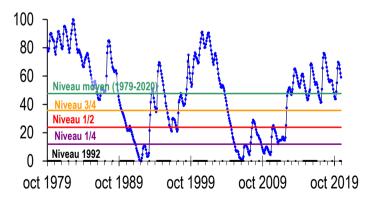
Voici 2 exemples pour comprendre le calcul de la recharge estimée au pas de temps journalier.

Le 22 octobre 1999, il est tombé 10,2 mm à Melun. Ce jour là, la demande en eau des plantes était de 1,2 mm et le stock d'eau présent dans le sol à l'issue des pluies précédentes était de 4 mm. Sur ces 10,2 mm de pluie, on peut donc estimer que 1,2 mm ont alimenté les plantes et que les 9 mm restants ont été stockés par le sol (soit un nouveau stock dans le sol de 4 + 9 = 13 mm). La recharge estimée est donc nulle.

Le 17 décembre 1999, il est tombé 11,6 mm, avec une demande en eau des plantes de 0,5 mm. La réserve des sols à l'issue des pluies précédentes était de 79,7 mm. Par conséquent, sur les 11,6 mm de précipitations, 0,5 mm ont alimenté les plantes, 0,3 mm sont venus s'ajouter au stock du sol jusqu'à la valeur maximum estimée de 80 mm. Les 10,8 mm restants ont rechargé la nappe.

Lorsque les pluies journalières sont importantes, l'eau peut ruisseler et court-circuiter le sol et la plante. Ce ruissellement varie selon la pente, la nature du sol et l'intensité horaire de la pluie, facteurs que nous ne connaissons pas. D'après la même méthode de calage que pour la réserve du sol, nous avons fixé la hauteur de pluie journalière à partir de laquelle on estime qu'il existe du ruissellement à **15 mm**. Ainsi, sur une pluie journalière de 25 mm, 15 mm entreront dans le cycle plante-sol-nappe et 10 mm ruisselleront vers les rivières et de ce fait en partie vers la nappe via les pertes. Ce ruissellement est donc comptabilisé comme recharge estimée.

2 – L'INDICATEUR PIEZOMETRIQUE


L'indicateur piézométrique a été construit à partir des données du réseau piézométrique du Ministère de l'Ecologie (http://seine-normandie. brgm.fr/). Les valeurs brutes ont été critiquées et validées afin d'écarter les valeurs incohérentes d'un point de vue hydrogéologique ou les niveaux dynamiques, influencés par un pompage proche. Des tests de corrélations entre les niveaux de nappe mesurés sur 10 piézomètres depuis leurs mises en service ont montré qu'au pas de temps annuel ou mensuel, les niveaux mesurés aux piézomètres de Saint-Martin-Chennetron et Montereau-sur-le-Jard étaient parmi les plus représentatifs du mouvement d'ensemble de la nappe (avec Brie-Comte-Robert, Champeaux et Châtillon-la-Borde).

Le niveau de la nappe fluctuant selon des cycles pluriannuels, nous avons calculé cet indicateur sur 40 ans de données. Cela nous a conduits à conserver pour le calcul de cet indicateur uniquement les piézomètres de Montereau-sur-le-Jard et de Saint-Martin-Chennetron, seules stations ayant toujours fonctionné sur cette période.

Saint-Martin-Chennetron est représentatif du fonctionnement de la nappe dans un bassin versant oriental, secteur peu influencé par les prélèvements et drainé essentiellement par des sources. Montereausur-le-Jard est représentatif du fonctionnement de la nappe sur sa partie occidentale, dans un lieu de forts prélèvements.

De 1979 à aujourd'hui, le battement de la nappe est de 26 m à Saint-Martin Chennetron et de 8 m à Montereau-sur-le-Jard. De façon à pouvoir comparer les niveaux mesurés à chaque piézomètre, ils ont été pondérés, c'est-à-dire ramenés à une échelle normalisée (entre 0 et 100).

L'indicateur piézométrique, calculé sur des mesures mensuelles, est la moyenne des niveaux mensuels pondérés mesurés aux deux stations. Le niveau 0 correspond à l'automne 1992, année de forte pénurie et le niveau 100 correspond au printemps 1983 où la recharge avait été très forte. A la manière d'une jauge, nous avons défini entre le niveau moyen et le niveau 0 de 1992, les niveaux ¾, ½ et ¼ dont le franchissement alerte sur le taux de vidange de la nappe. En 2019-2020, l'indicateur est en moyenne de 58, donc au-dessus de la moyenne 1979-2020. Dans le détail, en fin d'année 2019, il n'a fait que décroitre jusqu'à passer sous le niveau moyen (44 en décembre 2019). Grâce à la bonne recharge, il a atteint 70 en avril 2020, et termine l'année hydrologique à 59.

L'indicateur piézométrique depuis 1979

38

3 – LA CONCENTRATION MOYENNE DES QUANTIFICATIONS DE PESTICIDES DANS LES EAUX SUPERFICIELLES

Elle a été calculée en effectuant pour chaque molécule la moyenne des concentrations mesurées lors des différentes campagnes lorsque la molécule a été quantifiée. Jusqu'au 20ème tableau de bord, nous calculions une concentration qui prenait en compte les recherches infructueuses, en leur affectant par défaut une concentration de 0,0025 µg/l qui était une valeur alors inférieure à la plupart des limites de quantification. Cette règle n'est plus applicable car pour 13% des recherches, notamment d'insecticides, la limite de quantification atteinte par les laboratoires est inférieure à ces 0,0025 µg/l (cf. Annexe 3). Désormais nous affichons donc la concentration moyenne des seules quantifications. Il faut par conséquent bien regarder cette valeur au regard du pourcentage de quantification voisin, et ne pas donner trop d'importance à une concentration élevée qui serait le reflet d'un très faible nombre de constatations.

4 – LE POURCENTAGE DE QUANTIFICATION DES PESTICIDES DANS LES EAUX SUPERFICIELLES

Le pourcentage de quantification des pesticides dans les eaux superficielles est le rapport entre le nombre de fois où l'on quantifie la substance et le nombre de fois où on l'a recherche. Par exemple, le pourcentage de quantification du flufénacet, recherché 143 fois et quantifié à 112 reprises en 2019-2020 sur les 20 stations de l'indicateur est de 43%.

5 – L'INDICATEUR NITRATES

Pour chaque captage, nous avons retenu l'analyse la plus déclassante, c'est-à-dire la concentration en nitrates la plus élevée mesurée au cours de l'année étudiée. L'indicateur est la moyenne des concentrations des 33 captages sur lesquels nous disposons d'analyses cette année

6 - L'INDICATEUR 6 TRIAZINES

Pour chaque captage sur lequel on dispose sur l'année hydrologique d'au moins une analyse sur eau brute synchrone des 6 triazines (atrazine, terbuthylazine, simazine, cyanazine, et leurs produits de dégradation déséthylatrazine et déisopropylatrazine), on calcule le cumul des concentrations des triazines par analyse. Pour l'année considérée, on retient le cumul le plus important.

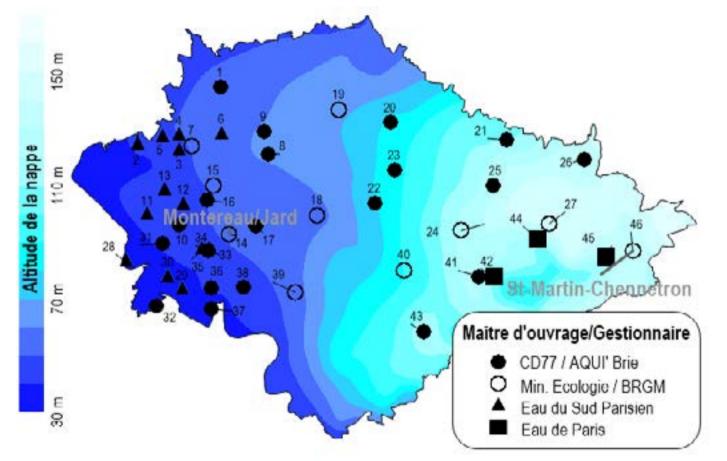
7 - L'INDICATEUR QUANTITE D'AZOTE VENDUE ESTIMEE

Jusqu'en 2007, l'indicateur se basait sur la quantité d'engrais azotés vendue sur le département de Seine-et-Marne, par les vendeurs ayant leur siège dans le département. Depuis 2008, l'UNIFA transmet les quantités d'azote qui seraient livrées en Seine-et-Marne, avec un doute subsistant pour la prise en compte des quantités d'azote livrées à des coopératives hors Seine-et-Marne qui revendent en Seine-et-Marne. A défaut d'avoir les ventes d'engrais au code postal de l'acheteur final, comme c'est désormais le cas pour les produits phytosanitaires, il est toujours impossible d'avoir une estimation précise du tonnage d'azote vendu en Seine-et-Marne à partir des chiffres de l'UNIFA.

ANNEXE 2 - CONVENTIONS SEQ-EAUX SOUTERRAINES MODIFIÉES

De manière à garder une certaine continuité avec les années précédentes, nous conservons, pour la construction des cartes, les classes de concentration du SEQ-EAUX souterraines. Cet ancien outil, mis en place par les Agences de l'Eau et le Ministère de l'environnement avait pour but d'évaluer la qualité des eaux pour différents usages (AEP, abreuvage, etc...) ainsi que l'état patrimonial de la ressource.

Différentes altérations (groupes de paramètres) permettent de décrire les types de dégradation de l'eau, parmi lesquelles l'altération nitrates. Selon la concentration mesurée pour chaque paramètre à un captage, l'outil SEQ-EAU lui assigne l'une des 5 classes retenues (cf. tableau ci-contre pour l'altération nitrates et l'usage patrimonial). Pour déterminer la classe dans laquelle se trouve chaque point d'eau, nous avons sélectionné l'analyse la plus déclassante de l'année en cours, conformément à la règle du SEQ-EAUX souterraines.


En revanche, nous ne disposons pas toujours, comme il l'était demandé dans la convention SEQ-EAUX souterraines, de deux analyses par an, effectuées de façon synchrone sur tous les points aux périodes de basses et hautes-eaux. La fréquence des analyses à notre disposition est variable selon les réseaux de suivi et l'importance du point de prélèvement (entre 1 et 12 mesures par an selon les points). Pour cette raison, nous parlons de conventions SEQ-EAUX souterraines modifiées.

NO ₃ en mg/l	Nive	au de dégradation de l'état patrimonial
< 10	classe 1	Composition naturelle ou subnaturelle
10 - 20	classe 2	Composition proche de l'état naturel mais détection d'une contamination d'origine anthropique
20 - 40	classe 3	Dégradation significative par rapport à l'état naturel
40 - 50	classe 4	Dégradation importante par rapport à l'état naturel
> 50	classe 5	Dégradation très importante par rapport à l'état naturel

Pour l'altération pesticides et l'usage patrimonial, les concentrations limites des différentes classes, pour chaque pesticide et le total des pesticides, sont les suivantes :

	A, Diuron, Isoproturon, Lindane, esticides et total pesticides en µg/l
< 0,01	classe 1
0,01 - 0,05	classe 2
0,05 - 0,1	classe 3
0,1 - 0,5	classe 4
> 0,5	classe 5

M	COMMUNIC	DOO	0
Num	COMMUNE	BSS	Gestionnaire
1	ROISSY	01846X0361	Dépt 77 - AQUI' Brie
2	YERRES - ETOILE	02194X9999	Eau du Sud Parisien
3	SERVON	02201X0078	Eau du Sud Parisien
4	SANTENY	02201X0085	Eau du Sud Parisien
5	MAROLLES-EN-BRIE	02201X0086	Eau du Sud Parisien
6	CHEVRY-COSSIGNY	02202X0107	Eau du Sud Parisien
7	FEROLLES-ATTILLY	02202X0150	Piezo Min.Ecologie
8	PRESLES-EN-BRIE	02203X0002	Dépt 77 - AQUI' Brie
9	GRETZ-ARMAINVILLIERS	02203X0106	Dépt 77 - AQUI' Brie
10	MOISSY-CRAMAYEL	02205X0121	Dépt 77 - AQUI' Brie
11	TIGERY - CROIX-BRETON	02205X9996	Eau du Sud Parisien
12	COMBS-LA-VILLE-EGRENAY	02205X9997	Eau du Sud Parisien
13	COMBS-LA-VILLE - ECOLE	02205X9998	Eau du Sud Parisien
14	MONTEREAU-SUR-LE-JARD	02206X0022	Piezo Min.Ecologie
15	BRIE-COMTE-ROBERT	02206X0085	Piezo Min.Ecologie
16	EVRY-GREGY-SUR-YERRE_01	02206X0118	Dépt 77 - AQUI' Brie
17	CHAMPDEUIL	02207X0069	Dépt 77 - AQUI' Brie
18	VERNEUIL-L'ETANG	02208X0036	Piezo Min.Ecologie
19	HOUSSAYE-EN-BRIE (LA)	02211X0020	Piezo Min.Ecologie
20	PEZARCHES	02212X0021	Dépt 77 - AQUI' Brie
21	CHEVRU	02214x0036	Dépt 77 - AQUI' Brie
22	COURPALAY	02215X0049	Dépt 77 - AQUI' Brie
23	VOINSLES	02216X0029	Dépt 77 - AQUI' Brie

Num	COMMUNE	BSS	Gestionnaire
24	SAINT-JUST-EN-BRIE	02217X0045	Piezo Min.Ecologie
25	BANNOST-VILLEGAGNON	02218X0033	Dépt 77 - AQUI' Brie
26	CERNEUX	02222X0034	Dépt 77 - AQUI' Brie
27	SAINT-HILLIERS	02225X0016	Piezo Min.Ecologie
28	MORSANG-SUR-SEINE	02574X0105	Eau du Sud Parisien
29	BOISSISE-LA-BERTRAND	02581X0095	Eau du Sud Parisien
30	SEINE PORT	02581X0096	Eau du Sud Parisien
31	SAVIGNY-LE-TEMPLE	02581X0103	Dépt 77 - AQUI' Brie
32	SAINT-FARGEAU-PONTHIERRY	02581X0104	Dépt 77 - AQUI' Brie
33	VERT -SAINT- DENIS	02582X0208	Dépt 77 - AQUI' Brie
34	VERT-SAINT-DENIS- POUILLY	02582X0208	Eau du Sud Parisien
35	VERT-SAINT-DENIS- PERREUX	02582X0209	Eau du Sud Parisien
36	MEE-SUR-SEINE (LE)	02582X0268	Dépt 77 - AQUI' Brie
37	DAMMARIE-LES-LYS	02582X0269	Dépt 77 - AQUI' Brie
38	MAINCY	02583X0065	Dépt 77 - AQUI' Brie
39	CHATILLON-LA-BORDE	02584X0024	Piezo Min.Ecologie
40	NANGIS	02592X0036	Piezo Min.Ecologie
41	MAISON ROUGE	02594X0094	Dépt 77 - AQUI' Brie
42	CHAPELLE-SAINT-SULPICE (LA)	02594X9998	Eau de Paris
43	VILLENEUVE-LES-BORDES	02596X0045	Dépt 77 - AQUI' Brie
44	MORTERY	02601X9999	Eau de Paris
45	LECHELLE	02602X0068	Eau de Paris
46	ST-MARTIN-CHENNETRON	02603X0009	Piezo Min. Ecologie

ANNEXE 4 - LES 612 PESTICIDES RECHERCHÉS DANS LES EAUX SUPERFICIELLES (PAR L'AESN ET LE CD 77) EN 2019-2020 PAR LES LABORATOIRES ET LES LIMITES DE QUANTIFICATION

Les laboratoires EUROFINS Maxéville et CARSO SLEH successivement chargé des analyses des Réseaux de suivi de l'Agence de l'Eau ont recherché respectivement 470 et 529 pesticides. Le laboratoire d'analyse de Seine-et-Marne (LDA77) recherche 72 pesticides sur les stations du Réseau d'Intérêt Départemental de Seine-et-Marne (RID77). Soit un total de 612 pesticides recherchés tous laboratoires confondus (et 611 pour les seuls suivis Agence). Nous indiquons les limites de quantification en microgramme par litre des différents laboratoires. Plus la limite de quantification d'un pesticide est basse, plus il y a de probabilité qu'il soit quantifié. A contamination égale, l'intervention d'un laboratoire plus performant

fait donc mathématiquement augmenter son pourcentage de quantification, puisque le laboratoire est capable de l'identifier à plus faible concentration.

Les pesticides sont classés dans l'ordre alphabétique de leur libellé (2ème colonne). La 1ère colonne est le code Sandre du paramètre. La couleur indique la cible de chaque pesticide: Herbicide, Fongicide, Insecticide et/ou Acaricide, Régulateur de croissance, Métabolite et Autres (rodenticides, nématicides, molluscides, antimousse, adjuvants et complexes). En gras, les pesticides autorisés en 2020 d'après e-phy.

Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77
1264	2,4,5-T	0,02			6855	Alachlor OXA	0,03	0,01		1108	Atrazine déséthyl	0,005	0,002	0,01	5526	Boscalid	0,02	0,002	0,02	1128	Captane		0,05	
1141	2,4-D	0,02	0,002	0,02	1101	Alachlore	0,005	0,002	0,02	2014	Azaconazole	0,02	0,01		5546	Brodifacoum		0,1		1463	Carbaryl	0,02	0,002	
2872	2,4-D isopropyl ester	0,005	0,02		1102	Aldicarbe	0,02	0,02		2015	Azamétiphos	0,02	0,005		1686	Bromacil	0,02	0,002	0,02	1129	Carbendazime	0,005	0,002	0,01
1142	2,4-DB	0,05	0,01		1807	Aldicarbe sulfone	0,02			2937	Azimsulfuron	0,02			1859	Bromadiolone	0,05	0,03		1333	Carbétamide	0,02	0,002	0,02
1212	2,4-MCPA	0,02	0,002	0,02	1806	Aldicarbe sulfoxyde	0,02			1110	Azinphos éthyl	0,02	0,01		1123	Bromophos éthyl	0,01	0,01		1130	Carbofuran	0,02	0,002	
1213	2,4-MCPB	0,02	0,005		1103	Aldrine	0,001	0,001		1111	Azinphos méthyl	0,02	0,01		1124	Bromophos Méthyl	0,01	0,01		1131	Carbophénothion	0,01	0,01	
2011	2,6-Dichlorobenzamide	0,005	0,002		7501	Allyxycarbe	0,02			1951	Azoxystrobine	0,02	0,002	0,02	1685	Bromopropylate	0,01	0,05		1864	Carbosulfan		0,02	
1832	2-hydroxy atrazine	0,02	0,005	0,02	1812	Alpha-cyperméthrine		0,02		7522	Béflubutamide	0,01	0,03		1125	Bromoxynil	0,02	0,002	0,02	2975	Carboxine	0,02	0,005	
3159	2-hydroxy-desethyl-Atrazi	0,02	0,02		1104	Amétryne	0,02	0,002		1687	Benalaxyl	0,01	0,005		1941	Bromoxynil octanoate		0,03		2976	Carfentrazone-ethyl	0,01	0,1	
5695	3,4,5-Trimethacarb	0,02			5697	Amidithion	0,02			1329	Bendiocarbe	0,02	0,05		1860	Bromuconazole	0,02	0,002		1865	Chinométhionate		0,08	
1805	3hydroxycarbofuran	0,02			2012	Amidosulfuron	0,02			1112	Benfluraline	0,01	0,03		1530	Bromure de méthyle	0,03	0,03		2016	Chlorbromuron	0,02	0,005	
1100	Acéphate	0,02	0,1		5523	Aminocarbe	0,02			2074	Benoxacor	0,01	0,002	0,02	7502	Bufencarbe	0,02			1336	Chlorbufame		0,01	
5579	Acetamiprid	0,03	0,005		1105	Aminotriazole	0,03	0,02	0,03	5512	Bensulfuron-methyl	0,02			1861	Bupirimate		0,02		1132	Chlordane	0,01	0,005	
6856	Acetochlor ESA	0,03	0,02		7516	Amiprofos-methyl	0,02			6595	Bensulide	0,02			1862	Buprofézine	0,01	0,05		7010	Chlordane alpha	0,01	0,005	
6862	Acetochlor OXA	0,03	0,02		1308	Amitraze		1		1113	Bentazone	0,02	0,002	0,02	7885	Butachlor ESA sodium salt		0,005		1757	Chlordane béta	0,01	0,005	
1903	Acétochlore	0,005	0,002	0,02	1907	AMPA	0,03	0,02	0,1	1764	Benthiocarbe	0,02	0,02		7884	Butachlor OA		0,005		1866	Chlordécone		0,01	
7718	Acétochlore SAA		0,01		6594	Anilofos	0,02			1119	Bifénox	0,005	0,0036		5710	Butamifos	0,02			5553	Chlorfenson	0,01		
5581	Acibenzolar-S-Methyl	0,02			2013	Anthraquinone	0,005	0,01		1120	Bifenthrine	0,01	0,01		1126	Butraline	0,01	0,01		1464	Chlorfenvinphos	0,005	0,01	
1970	acifluorfen	0,02	0,05		1965	asulame	0,02	0,005		1502	Bioresméthrine	0,01	0,01		1531	Buturon	0,02	0,005		2950	Chlorfluazuron		0,01	
1688	Aclonifène	0,001	0,015		1107	Atrazine	0,005	0,002	0,01	1584	Biphényle	0,005	0,01		7038	Butylate	0,02			1133	Chloridazone	0,005	0,002	0,02
1310	Acrinathrine	0,01	0,03		1109	Atrazine déisopropyl	0,005	0,005	0,01	1529	Bitertanol	0,02	0,002		1863	Cadusafos	0,02	0,02		5522	Chlorimuron-ethyl	0,02		
6800	Alachlor ESA	0,02	0,02		3160	Atrazine déisopropyl-2-hydroxy		0,03		7345	Bixafen	0,02	0,01		1127	Captafol		0,1		1134	Chlorméphos	0,01	0,02	

Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77
5554	Chlormequat	0,03	0,01		5930	Daimuron	0,02			2982	Difenacoum	0,02			5529	Ethametsulfuron-methyl	0,02			1825	Fluazifop-butyl		0,01	ldot
1341	Chloronèbe	0,01	0,005		2094	Dalapon		100		1905	Difénoconazole	0,025	0,005		2093	Ethephon		100		2984	Fluazinam		0,002	lacksquare
1684	Chlorophacinone	0,1	0,02		5597	Daminozide	0,03	1		5524	Difenoxuron	0,02			1763	Ethidimuron	0,02	0,002	0,02	2022	Fludioxonil	0,02	0,002	
1473	Chlorothalonil		0,02		1869	Dazomet		0,1		2983	Difethialone	0,02	0,02		5528	Ethiofencarbe sulfone	0,02			1940	Flufénacet	0,02	0,002	
7717	Chlorothalonil SA		1		1929	DCPMU	0,02	0,005	0,01	1488	Diflubenzuron	0,02	0,005		6534	Ethiofencarbe sulfoxyde	0,02			6864	Flufénacet ESA		0,005	lacksquare
7715	Chlorothalonil-4-hydroxy	0,03	0,1		1930	DCPU	0,02	0,005		1814	Diflufenicanil	0,001	0,002	0,01	1183	Ethion	0,02	0,005		6863	Flufénacet OXA		0,005	ldot
1683	Chloroxuron	0,02	0,005		1143	DDD 24'	0,001	0,001		1870	Dimefuron	0,02	0,002		1874	Ethiophencarbe	0,02	0,1		1676	Flufenoxuron		0,01	
1474	Chlorprophame	0,005	0,01	0,08	1144	DDD 44'	0,001	0,001		7142	Dimepiperate	0,02			1184	Ethofumésate	0,005	0,005	0,02	2023	Flumioxazine	0,005	0,02	
1083	Chlorpyriphos-éthyl	0,001	0,005		1145	DDE 24'	0,005	0,001		2546	Dimétachlore	0,005	0,002	0,01	1495	Ethoprophos	0,02	0,02		1501	Fluométuron	0,02	0,005	
1540	Chlorpyriphos-méthyl	0,02	0,02		1146	DDE 44'	0,001	0,002		7727	Dimétachlore CGA	0,02	0,01		5527	Ethoxysulfuron	0,02			5638	Fluoxastrobine	0,03	0,01	
1353	Chlorsulfuron	0,02	0,002		1147	DDT 24'	0,001	0,001		6381	Dimétachlore-ESA	0,02	0,005		6601	Ethyleneuree	0,03	0,1		2565	Flupyrsulfuron methyle	0,03		
2966	Chlorthal-diméthyl	0,01	0,02		1148	DDT 44'	0,001	0,001		6380	Dimétachlore-OXA	0,005	0,005		5484	Ethyluree	0,5	0,5		2056	Fluquinconazole	0,02	0,02	
1813	Chlorthiamide		0,1		1830	DEDIA	0,02	0,03		5737	Dimethametryn	0,02			5760	Etrimfos		0,02		1974	fluridone	0,02	0,002	
5723	Chlorthiophos	0,02			1149	Deltaméthrine	0,005	0,001		1678	Dimethenamide	0,005	0,002		5648	ETU	0,03			1675	Flurochloridone	0,005	0,02	
1136	Chlortoluron	0,02	0,002	0,02	1150	Déméton-O	0,01	0,01		6865	Diméthénamide ESA	0,005	0,005		5761	Famphur	0,02			1765	Fluroxypyr	0,02	0,01	0,02
5481	Cinosulfuron	0,02			1153	Déméton-S-Méthyl	0,01	0,023		7735	Diméthénamide OXA		0,005		2057	Fénamidone Pénamidone	0,02			2547	Fluroxypyr-meptyl	0,02	0,02	
2978	Clethodim	0,02	0,02		1154	Déméton-S-Méthyl-Sulf.	0,02	0,005		5617	Dimethenamid-P	0,005	0,002		1185	Fénarimol	0,005	0,002		2024	Flurprimidol	0,01		
2095	Clodinafop-propargyl	0,02			1697	Depalléthrine		0,02		1175	Diméthoate	0,02	0,005		2742	Fénazaquin		0,02		2008	Flurtamone	0,02	0,002	
2017	Clomazone	0,005	0,002		2051	Déséthyl-terbuméthon	0,03	0,002		1403	Diméthomorphe	0,02	0,002		1906	Fenbuconazole	0,02	0,005		1194	Flusilazole	0,02	0,002	
1810	Clopyralide	0,02	0,01		2980	Desmediphame	0,02	0,02		6972	Dimethylvinphos	0,02			1186	Fenchlorphos	0,01	0,01		2985	Flutolanil	0,02	0,002	
2018	Cloquintocet-mexyl		0,02		2738	Desméthylisoproturon	0,02	0,002		1698	Dimétilan	0,02			2743	Fenhexamid	0,02	0,005		1503	Flutriafol	0,02	0,002	
6389	Clothianidine	0,02	0,01		2737	Desmethylnorflurazon	0,005	0,01		1871	Diniconazole	0,02	0,005		1187	Fénitrothion	0,01	0,01		1193	Fluvalinate-tau	0,01	0,02	
2972	Coumafène	0,02			1155	Desmétryne	0,02	0,002		1490	Dinitrocrésol	0,02	0,002		5627	Fenizon	0,01	0,02		7342	fluxapyroxade			0,02
1682	Coumaphos	0,02	0,05		1156	Diallate	0,02	0,02		5619	Dinocap		0,02		5763	Fenobucarb	0,02			1192	Folpel	0,006	0,05	
2019	Coumatétralyl	0,02	0,002		1157	Diazinon	0,01	0,01		1491	Dinosèbe	0,02			5970	Fenothiocarbe	0,02			1674	Fonofos	0,02	0,015	
5724	Crotoxyphos	0,02			1480	Dicamba	0,03	0,005		1176	Dinoterbe	0,03	0,005		2061	Fenothrine		0,02		2806	Foramsulfuron	0,03	0,002	
5725	Crufomate	0,02			1679	Dichlobenil	0,005	0,02		5743	Dioxacarb	0,02			1973	fenoxaprop-ethyl	0,02	0,02		5969	Forchlorfenuron	0,02		
1137	Cyanazine	0,02	0,002		1159	Dichlofenthion	0,01	0,02		1699	Diquat	0,02	0,01		1967	fénoxycarbe	0,02	0,005		1504	Formothion		0,02	
5726	Cyanofenphos	0,02			1360	Dichlofluanide		0,02		1492	Disulfoton	0,01	0,05		1188	Fenpropathrine	0,01	0,04		5649	Fosamine-ammonium		100	
5567	Cyazofamid		0,01		2929	Dichlormide	0,01	0,03		1177	Diuron	0,02	0,002	0,01	1700	Fenpropidine	0,03	0,001	0,01	1816	Fosetyl	0,0185	0,1	
5568	Cycloate	0,02			2981	Dichlorophène	0,02	0,002		5751	Edifenphos	0,02			1189	Fenpropimorphe	0,01	0,002	0,01	1975	fosetyl-aluminium	0,02	0,1	
2729	Cycloxydime	0,02			1169	Dichlorprop	0,02	0,002	0,02	1743	Endosulfan		0,001		1190	Fenthion	0,02	0,005		2744	Fosthiazate	0,02	0,03	
1696	Cycluron	0,02			2544	Dichlorprop-P	0,02	0,002		1178	Endosulfan A	0,001	0,001		1500	Fénuron	0,02	0,002	0,02	1908	Furalaxyl	0,01	0,002	
1681	Cyfluthrine	0,01	0,02		1170	Dichlorvos	0,00025	0,005		1179	Endosulfan B	0,001	0,001		1701	Fenvalérate		0,5		2720	Furaldehyde		10	
5569	Cyhalofop-butyl	0,02			1171	Diclofop méthyl	0,05	0,01		1742	Endosulfan sulfate	0,01	0,005		2009	Fipronil	0,01			2567	Furathiocarbe	0.02	0,005	
1139	Cymoxanil	0,02	0,005		1172	Dicofol		0,0003		1181	Endrine	0,001	0,001		1840	Flamprop-isopropyl	0,02		П	7441	Furilazole	0,02		
1140	Cyperméthrine	0,01	0,02		5525	Dicrotophos	0,02			2941	Endrine aldehyde	0,01			6539	Flamprop-methyl	0,02			1526	Glufosinate		0,02	
1680	Cyproconazole	0,02	0,002	0,01	2847	Didéméthylisoproturon		0,002		1873	EPN	0,02	0,1		1939	Flazasulfuron	0,02	0,002		1506	Glyphosate	0,03	0,02	0,1
1359	Cyprodinil	0,005	0,002	0,01	1173	Dieldrine	0,001	0,001		1744	Epoxiconazole	0,02	0,002	0,01	6393	Flonicamid	0,005	0,02		5508	Halosulfuron-methyl	0,02		
2897	Cyromazine	0,02	0.03		1402	Diéthofencarbe	0.02	0.05		1182	EPTC	0.05			2810	Florasulam	0.03	0,002		2047	Haloxyfop	0.02		
7503	Cythioate	0.02	.,	\vdash	2826	Diethylamine	.,,	20		1809	Esfenvalerate	0.01	0.02		6545	Fluazifop	0.02	.,		7783	Haloxyfop méthyl	.,,==	0.002	

Manufaction	CdS	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77
100 100	1833	Haloxyfop-éthoxyéthyl	0,02			1208	Isoproturon	0,02	0,002	0,01	2987	Métalaxyl-M		0,005		1883	Nuarimol	0,01	0,03		1889	Profenofos	0,02	0,005	
100 100	1909	Haloxyfop-méthyl (R)	0,02			2722	Isothiocyanate de methyle	0,02			1796	Métaldéhyde	0,02	0,02		2027	Ofurace	0,01			5668	Prohexadione-ca		0,1	
100 100	1200	HCH alpha	0,001	0,001		1672	Isoxaben	0,02	0,002	0,01	1215	Métamitrone	0,02	0,002	0,02	1230	Ométhoate	0,0005	0,02		1710	Promécarbe	0,02	0,005	
2006	1201	HCH bêta	0,001	0,001		1945	Isoxaflutole	0,02	0,005		2088	Metam-sodium		2		1668	Oryzalin	0,02	0,005	0,08	1711	Prométone	0,02	0,002	
100 100	1202	HCH delta	0,001	0,001		5784	Isoxathion	0,02			1670	Métazachlore	0,005	0,002	0,01	2068	Oxadiargyl		0,02		1254	Prométryne	0,02	0,002	
Material propries services 10.08	2046	HCH epsilon	0,001	0,001		7505	Karbutilate	0,02			6895	Métazachlore ESA	0,01	0,01		1667	Oxadiazon	0,005	0,005	0,02	1712	Propachlore		0,002	
	1203	HCH gamma	0,001	0,001		1950	Krésoxym-méthyl	0,02	0,01		6894	Métazachlore OXA	0,01	0,01		1666	Oxadixyl	0,005	0,002	0,02	6887	Propachlore ESA		0,005	
	1748	Heptachlo epoxyde exo cis	0,005	0,005		1094	Lambda-cyhalothrine	0,01	0,01		1879	Metconazole	0,02	0,002	0,02	1850	Oxamyl	0,02	0,002		7736	Propachlore OXA		0,02	
1198 September Somme shares	1197	Heptachlore	0,005	0,005		1406	Lénacile	0,005	0,005	0,01	1216	Méthabenzthiazuron	0,01	0,005		5510	Oxasulfuron	0,02			6398	Propamocarb	0,02	0,017	
	1749	Heptachlore époxyde endo	0,005	0,01		1209	Linuron	0,02	0,005	0,01	5792	Methacrifos	0,02			1231	Oxydéméton-méthyl	0,02	0,005		2988	Propamocarb hcl		0,02	
Moderance Mode	1198	Heptachlore époxyde Somme cis/trans		0,01		2026	Lufénuron		0,002		1671	Methamidophos	0,02	0,02		1952	Oxyfluorfène		0,002		1532	Propanil		0,005	
1975 Hearthfuntor	1910	Heptenophos	0,02	0,05		5787	Malaoxon	0,02			1217	Méthidation	0,01	0,05		2545	Paclobutrazole	0,02	0,002		6964	Propaphos	0,02		
Marke Mark	1405	Hexaconazole	0,02	0,002		1210	Malathion	0,001	0,003		1218	Méthomyl	0,02	0,002		5806	Paraoxon	0,02			1972	propaquizafop	0,02	0,02	
1576 Hydrazide melique	1875	Hexaflumuron		0,002		1211	Mancozèbe		2		1511	Méthoxychlore	0,01	0,005		1522	Paraquat		0,02		1255	Propargite	0,01	0,02	
Seption Sept	1673	Hexazinone	0,02	0,002		6399	Mandipropamide		0,01		7716	MetNicosulfuron	0,02	0,1		1232	Parathion éthyl	0,01	0,01		1256	Propazine	0,02	0,005	
	1876	Hexythiazox	0,02	0,005		2745	MCPA-1-butyl ester	0,01			1515	Métobromuron	0,02	0,002	0,02	1233	Parathion méthyl	0,01	0,01		5968	Propazine 2-hydroxy	0,02	0,02	
1.00 1.00	5645	Hydrazide maleique	0,03	1		2746	MCPA-2-ethylhexyl ester	0,01			6854	Metolachlor ESA	0,02	0,01		1762	Penconazole	0,02	0,02		1533	Propétamphos	0,01	0,02	
	1954	Hydroxyterbuthylazine	0,01	0,005		2748	MCPA-ethyl-ester	0,01			6853	Metolachlor OXA	0,02	0,005		1887	Pencycuron	0,02	0,005		1534	Prophame		0,01	
Part Imazamethisherz-methyl Imazamethisherz-methyl Imazamethisherz-methyl Imazamethisherz-methyl Imazamethisherz-methyl Imazameth Imazamethisherz-methyl Imazameth Imazamethisherz-methyl Imazameth Imazamethisherz-methyl Imazameth I	1704	Imazalil	0,02	0,005		5789	Mecarbam	0,02			1221	Métolachlore	0,005	0,005	0,01	1234	Pendiméthaline	0,005	0,002	0,01	1257	Propiconazole	0,005	0,002	0,01
Marzanox	1695	Imazaméthabenz	0,02			1214	Mécoprop	0,02	0,002	0,02	8070	Métolachlore énantiomère S		0,002		6394	Penoxsulam	0,02			1535	Propoxur	0,02		
	1911	Imazamethabenz-methyl	0,01	0,002		2750	Mecoprop-1-octyl ester	0,01	0,1		7729	Métolachlore NOA	0,05	0,02		1523	Perméthrine	0,01	0,02		5602	Propoxycarbazone-sod		0,01	
260 mazquime	2986	Imazamox	0,02	0,002	0,02	2751	Mecoprop-2,4,4-trimethylp	0,01			5796	Metolcarb	0,02			1499	Phénamiphos	0,02			1414	Propyzamide	0,005	0,005	0,02
187 Indicacambe	2090	Imazapyr	0,02			2752	Mecoprop-2-butoxyethyl	0,01			1912	Métosulame	0,02	0,005		1236	Phenmédiphame	0,02			7422	Proquinazid	0,02	0,005	
Second Property Second Pro	2860	Imazaquine	0,02	0,01		2753	Mecoprop-2-ethylhexyl est	0,01			1222	Métoxuron	0,02	0,002		5813	Phenthoate	0,02	0,1		1092	Prosulfocarbe	0,02	0,005	
274 300 carbe 0.02 0.02 0.02 0.03 0.02 0.03 0.002 0.01 0.03 0.002 0.01 0	1877	Imidaclopride	0,02	0,005	0,02	2754	Mecoprop-2-octyl ester	0,01			5654	Metrafenone	0,01	0,01		1525	Phorate	0,02	0,1		2534	Prosulfuron	0,02	0,002	
2025 dodesightors 0.01 0.02 0.02 0.05 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0	5483	Indoxacarbe	0,02			2755	Mecoprop-methyl ester	0,01			1225	Métribuzine	0,02	0,002		1237	Phosalone	0,02	0,02		5603	Prothioconazole	0,03	1	0,04
2583 dosulfuron 0.02 0.02 0.03 0.001 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.03 0.005 0.001 0.02 0.005 0.001 0.02 0.005 0.001 0.02 0.005 0.001 0.02 0.005 0.001 0.02 0.005 0.001 0.02 0.005 0.001 0.005 0.0	2741	lodocarbe	0,02			2084	Mécoprop-P	0,03	0,002		1944	MetSulcotrione	0,1	1		1971	phosmet		0,005		7442	Proximpham	0,02		
648	2025	lodofenphos	0,01	0,02		1968	mefenacet	0,01	0,01		1797	Metsulfuron méthyle	0,02	0,002		1238	Phosphamidon	0,02			5416	Pymétrozine	0,02		
1205 Saymil 1206 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil 1207 Saymil	2563	lodosulfuron	0,02			2930	Méfenpyr diethyl	0,01	0,01		1226	Mévinphos	0,02	0,1		1665	Phoxime	0,005	0,00015		6611	Pyraclofos	0,02		
2871 Oxyml nethyl ether 0.01 0.01 0.01 0.02 0.02 0.01 0.05 0.	6483	iodosulfuron-methyl-sodium		0,002		2568	Mefluidide	0,02			7143	Mexacarbate	0,02			1708	Piclorame	0,03	0,005		2576	Pyraclostrobine	0,02	0,005	
1942	1205	loxynil	0,01	0,002	0,02	5533	Mepanipyrim	0,01	0,02		5438	mirex		0,05		5665	Picolinafen		0,03		5509	Pyraflufen-ethyl	0,02	0,03	
5777 probentics 0.02 289 Melpiquat Chlorure 0.03 0.015 1227 Monolinuron 0.02 0.002 0.015 1709 Piperonyl butoxyde 0.005 0	2871	loxynil methyl ether	0,01			5791	Mephosfolan	0,02			1707	Molinate	0,01	0,05		2669	Picoxystrobine	0,02	0,002		1258	Pyrazophos	0,02	0,005	
1205 prodione 0.01 0.005 0.01 0.005 1878 Merconil 0.01 0.02 0.01 1228 Monuron 0.02 0.02 0.01 5819 Piperophos 0.02 0.01 0.02 0.02 Piperophos 0.02 0.01 1828 Piperophos 0.01 0	1942	loxynil octanoate		0,01		1969	mepiquat	0,02	0,01		1880	Monocrotophos	0,02			7057	Pinoxaden		0,01		6386	Pyrazosulfuron éthyl	0,02		
284 forvalicarb	5777	Iprobenfos	0,02			2089	Mépiquat chlorure	0,03	0,015		1227	Monolinuron	0,02	0,002		1709	Piperonyl butoxyde	0,005	0,005		6530	Pyrazoxyfen	0,02		
1935 1937 1938 1938 1939	1206	Iprodione	0,01	0,005		1878	Mepronil	0,01	0,02		1228	Monuron	0,02	0,002	0,01	5819	Piperophos	0,02			2062	Pyrethrine		0,08	
1976 Sazzofos 0.02 0.04 5840 Merphos 0.02 1.05 Mesoutino 0.05 Meso	2951	Iprovalicarb	0,02	0,005		1804	Mercapto sulfoxyde	0,02	0,5		1881	Myclobutanil	0,02	0,005		5532	Pirimicarb Form. Dm	0,02			5826	Pyributicarb	0,02		
1207 Isodrine 0.001 0.001 0.001 2578 Mesosufuron methyle 0.02 0.002 0.002 0.003 0.01 0.	1935	Irgarol	0,001	0,0005		1510	Mercaptodiméthur	0,005	0,005		1516	Naled	0,02			1528	Pirimicarbe	0,02	0,005	0,01	1890	Pyridabène	0,01	0,01	
1829 Isofenphos 0,02 0,002 = 276 Mésotrione 0,03 0,01 = 1828 Nicosulfuron 0,01 0,05 0,02 = 2876 Mésotrione 0,03 0,01 = 1882 Nicosulfuron 0,01 0,05 0,02 = 1253 Prochloraz 0,001 0,001 0,02 = 1432 Pyriméthanil 0,005 0,002	1976	isazofos	0,02	0,04		5840	Merphos	0,02			1519	Napropamide	0,005	0,002	0,02	5531	Pirimicarbe Desmethyl	0,02			5606	Pyridaphenthion	0,02		
	1207	Isodrine	0,001	0,001		2578	Mesosulfuron methyle	0,02	0,005		1520	Néburon	0,02	0,02		1949	Pretilachlore	0,01	0,04		1663	Pyrifenox	0,01	0,002	
5781 Isoprocarb 0,02 1706 Meltalaxyl 0,02 0,002 1669 Norflurazone 0,005 0,002 1664 Procymidone 0,01 0,01 1260 Pyrimiphos-éthyl 0,02 0,005	1829	Isofenphos	0,02	0,002		2076	Mésotrione	0,03	0,01		1882	Nicosulfuron	0,01	0,005	0,02	1253	Prochloraz	0,001	0,001	0,02	1432	Pyriméthanil	0,005	0,002	
	5781	Isoprocarb	0,02			1706	Métalaxyl	0,02	0,002		1669	Norflurazone	0,005	0,002		1664	Procymidone	0,01	0,01		1260	Pyrimiphos-éthyl	0,02	0,005	

Cd S	Lib	CARSO	Eurofins	LDA77	Cd S	Lib	CARSO	Eurofins	LDA77
1261	Pyrimiphos-méthyl	0.005	0.01		1266	Terbuméton	0.02	0.002	0.01
5499	Pyriproxyfène	0.01	- 7,-		1267	Terbuphos	0.01	0.005	
7340	Pyroxsulam	- /-	0,005		1268	Terbuthylazine	0,005	0,002	0,01
1891	Quinalphos	0,02	0,02		2045	Terbuthylazine désethyl	0,01	0,002	0,01
2087	Quinmerac	0,02	0,002	0,02	1269	Terbutryne	0,005	0,002	
2028	Quinoxyfen	0,005	0,002		1277	Tétrachlorvinphos	0,02	0,05	
1538	Quintozène	0,01	0,04		1660	Tétraconazole	0,02	0,002	
2069	Quizalofop	0,05			1900	Tétradifon	0,01	0,03	
2070	Quizalofop éthyl	0,02	0,005		5837	Tetrasul	0,01		
2859	Resmethrine		0,05		1713	Thiabendazole	0,02	0,002	0,01
1892	Rimsulfuron	0,005	0,005		5671	Thiacloprid	0,03	0,01	
2029	Roténone	0,02	0,005		6390	Thiamethoxam	0,02	0,01	
1923	Sébuthylazine	0,02	0,002	0,01	1714	Thiazafluron	0,02		
6101	Sebuthylazine 2-hydroxy	0,02	0,02		5934	Thidiazuron	0,02		
5981	Sebutylazine desethyl	0,02	0,02		1913	Thifensulfuron methyl	0,02	0,002	
1262	Secbuméton	0,02	0,002		1093	Thiodicarbe	0,02		
1808	Séthoxydime	0,02			5476	Thiofanox sulfone	0,02		
1893	Siduron	0,02	0,005		5475	Thiofanox sulfoxyde	0,02		
1539	Silvex	0,02			2071	Thiométon	0,01	0,02	
1263	Simazine	0,005	0,002	0,01	1717	Thiophanate-méthyl		0,02	
1831	Simazine-hydroxy	0,02			5922	Tiocarbazil	0,02		
5477	Simétryne	0,02			5675	Tolclofos-methyl	0,02		
2974	S-Métolachlore	0,03			1719	Tolylfluanide		0,05	
2664	Spiroxamine	0,02	0,002	0,01	1279	Toxaphène		0,05	
1662	Sulcotrione	0,02	0,002		1658	Tralométhrine		0,1	
5507	Sulfomethuron-methyl	0,02			1544	Triadiméfone	0,02	0,005	
2085	Sulfosulfuron	0,02	0,005		1280	Triadiménol	0,02	0,002	
1894	Sulfotep	0,02	0,01		1281	Triallate	0,005	0,005	
5831	Sulprofos	0,02			1914	Triasulfuron	0,02	0,002	
1694	Tébuconazole	0,02	0,005	0,01	1901	Triazamate	0,02		
1895	Tébufénozide	0,02	0,01		1657	Triazophos	0,02	0,02	
1896	Tebufenpyrad	0,01	0,02		2064	Tribenuron-Methyle	0,02	0,02	
7511	Tebupirimfos	0,02	0,005		1287	Trichlorfon	0,02		
1661	Tébutame	0,01			1720	Trichloronat		0,01	
1542	Tébuthiuron	0,02			1288	Triclopyr	0,02	0,005	0,02
5413	Tecnazène	0,01			2898	Tricyclazole	0,02		
1897	Téflubenzuron		0,005		1811	Tridémorphe		0,1	
1953	Tefluthrine	0,01	0,02		5842	Trietazine	0,02	0,02	
7086	Tembotrione		0,005		6102	Trietazine 2-hydroxy	0,02	0,02	
1898	Temephos		0,05		5971	Trietazine desethyl	0,02	0,02	
1659	Terbacil	0,01			2678	Trifloxystrobine	0,02	0,001	

Cd S	Lib	CARSO	Eurofins	LDA77
1902	Triflumuron	0,02	0,002	
1289	Trifluraline	0,005	0,005	
2991	Triflusulfuron-methyl	0,02	0,005	
1802	Triforine	0,02		
2096	Trinexapac-ethyl	0,02	0,005	
2992	Triticonazole	0,02	0,002	
7482	Uniconazole	0,02		
1290	Vamidothion	0,02		
1291	Vinclozoline		0,02	
2858	Zoxamide	0,02	0,005	

Herbicide

Fongicide

Insectide/acaricide

Régulateur

Autres

Métabolite

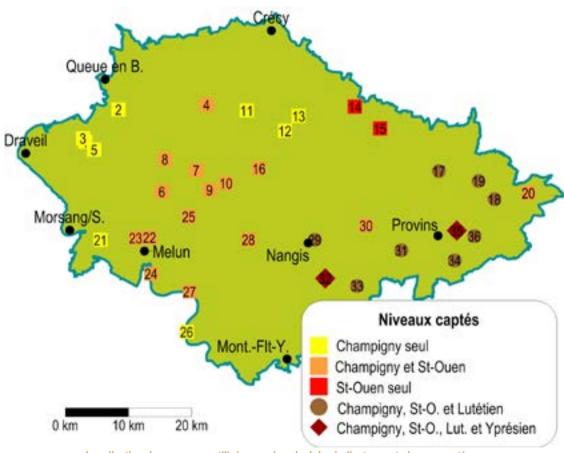
ANNEXE 5 - LES 162 PESTICIDES QUANTIFIÉS DANS LES EAUX SUPERFICIELLES EN 2019-2020 AUX 20 stations du Réseau de Contrôle Opérationnel (LABORATOIRES CARSO ET EUROFINS)

						Par ordre alpha	ibetique							
Substance quantifiée	% quanti	Cmoy (µg/l)	Substance quantifiée	% quanti	Cmoy (µg/l)	Substance quantifiée	% quanti	Cmoy (µg/l)	Substance quantifiée	% quanti	Cmoy (µg/l)	Substance quantifiée	% quanti	Cmoy (µg/l)
2,4-D	22,4	0,048	Chlorpyriphos-ét	0,7	0,001	Epoxiconazole	19,6	0,010	Lénacile	51,0	0,037	Pendiméthaline	38,5	0,016
2,4-MCPA	23,1	0,22	Chlortoluron	40,8	0,15	Ethidimuron	21,0	0,12	Mécoprop	21,7	0,036	Phenmédiphame	1,9	0,043
2,6-Dichlorobenzamide	40,6	0,012	Clethodim	2,8	0,14	Ethofumésate	31,5	0,11	Mécoprop-P	15,4	0,021	Piclorame	2,8	0,024
2-hydroxy atrazine	55,9	0,027	Clomazone	33,6	0,023	Ethyleneuree	6,7	0,17	mepiquat	1,0	0,027	Piperonyl butoxyde	3,5	0,008
Acétochlore	0,7	0,002	Clopyralide	2,8	0,029	Fenpropidine	11,9	0,008	Mépiquat chlorure	1,0	0,035	Pirimicarbe	2,8	0,028
Aclonifène	12,6	0,006	Clothianidine	1,4	0,012	Fénuron	4,2	0,005	Mesosulfuron met	1,4	0,025	Prochloraz	28,0	0,019
Alachlor ESA	12,4	0,031	Cyproconazole	25,9	0,021	Flazasulfuron	1,4	0,015	Mésotrione	9,1	0,18	Propamocarb	3,5	0,21
Alachlor OXA	1,9	0,021	Cyprodinil	11,2	0,025	Flonicamid	7,7	0,26	Métalaxyl	8,4	0,011	Propiconazole	49,0	0,013
Alachlore	2,8	0,050	DCPMU	10,5	0,016	Florasulam	0,7	0,039	Métalaxyl-M	17,5	0,012	Propyzamide	53,8	0,25
Amétryne	2,8	0,006	DCPU	1,4	0,014	Fludioxonil	2,8	0,003	Métaldéhyde	32,2	0,11	Prosulfocarbe	46,9	0,14
Amidosulfuron	1,0	0,026	DEDIA	61,4	0,069	Flufénacet	42,7	0,14	Métamitrone	17,5	0,30	Prosulfuron	0,7	0,010
Aminotriazole	7,7	0,082	Desméthylisoproturon	2,1	0,034	Flufénacet ESA	32,4	0,14	Métazachlore	70,6	0,032	Pymétrozine	1,0	0,038
AMPA	99,3	1,00	Dicamba	7,1	0,28	Flufénacet OXA	32,4	0,072	Métazachlore ESA	93,3	0,20	Pyraclostrobine	1,4	0,024
Anthraquinone	19,6	0,024	Dichlorprop	4,9	0,066	Flurochloridone	1,4	0,038	Métazachlore OXA	74,3	0,085	Pyrimiphos-méthyl	1,4	0,009
Atrazine	92,3	0,024	Dichlorprop-P	1,9	0,095	Fluroxypyr	14,0	0,075	Metconazole	14,0	0,014	Quinmerac	37,8	0,12
Atrazine déisopropyl	66,4	0,009	Dichlorvos	2,8	0,0004	Flurtamone	7,0	0,025	MetNicosulfuron	18,6	0,035	Simazine	52,4	0,010
Atrazine déséthyl	95,8	0,065	Didéméthylisoproturon	5,0	0,003	Flusilazole	7,0	0,004	Métobromuron	11,2	0,23	S-Métolachlore	30,0	0,34
Azoxystrobine	25,2	0,045	Difénoconazole	4,2	0,019	Flutolanil	0,7	0,015	Metolachlor ESA	96,2	0,25	Sulcotrione	5,6	0,029
Benoxacor	4,2	0,015	Diflufenicanil	95,1	0,023	Flutriafol	10,5	0,004	Metolachlor OXA	69,5	0,14	Tébuconazole	37,1	0,081
Bentazone	57,3	0,10	Dimétachlore	29,4	0,012	Fluvalinate-tau	0,7	0,013	Métolachlore	84,6	0,10	Terbuthylazine	28,7	0,032
Biphényle	3,5	0,016	Dimétachlore CGA	96,4	0,10	Fosetyl	5,0	0,058	Métolachlore én S	82,5	0,060	Terbuthylazine dés	22,4	0,031
Bixafen	3,6	0,040	Dimétachlore-ESA	47,1	0,063	fosetyl-aluminium	5,0	0,062	Métolachlore NOA	75,0	0,16	Terbutryne	25,2	0,007
Boscalid	28,7	0,012	Dimétachlore-OXA	45,7	0,026	Glyphosate	78,3	0,40	Métribuzine	10,5	0,051	Tétraconazole	7,7	0,010
Bromacil	8,4	0,017	Dimethenamide	59,4	0,080	HCH gamma	11,9	0,002	MetSulcotrione	1,4	0,28	Thiabendazole	2,1	0,003
Bromoxynil	7,0	0,043	Diméthénamide ESA	41,9	0,051	Hexazinone	4,2	0,004	Monolinuron	1,4	0,003	Thiacloprid	0,7	0,031
Bromuconazole	10,5	0,025	Diméthénamide OXA	21,6	0,046	Hydrazide maleique	3,5	0,040	Monuron	2,1	0,007	Triallate	11,9	0,021
Carbendazime	20,3	0,008	Dimethenamid-P	58,7	0,081	Hydroxyterbut	51,0	0,014	Napropamide	10,5	0,018	Tribenuron-Met	1,4	0,026
Carbétamide	0,7	0,009	Diméthomorphe	2,8	0,014	Imazaméthabenz	1,0	0,021	Nicosulfuron	15,4	0,034	Triclopyr	16,8	0,058
Chloridazone	78,3	0,046	Dinitrocrésol	25,9	0,031	Imazamox	4,9	0,014	Ofurace	1,0	0,012	Triflusulfuron-met	4,2	0,034
Chlormequat	1,0	0,16	Diuron	33,6	0,048	Imidaclopride	22,4	0,018	Oryzalin	0,7	0,007	Zoxamide	0,7	0,006
Chlorothalonil SA	5,4	1,15	Endosulfan	2,5	0,001	lodosulfuron	1,0	0,079	Oxadiazon	4,9	0,050			
Chlorothalonil-4-hyd	10,7	0,063	Endosulfan A	0,7	0,001	Isoproturon	14,0	0,060	Oxadixyl	74,8	0,015			
Chlorprophame	5,6	0,13	Endosulfan sulfate	0,7	0,006	Isoxaben	1,4	0,018	Pencycuron	0,7	0,046	Autres		
Herbicide			Fongicide	1		Insecti/acaricide	1		Régulateur	1		Métabolite	1	

^{*} Calcul du pourcentage de quantification : Rapport entre le nombre total de quantifications sur les 20 stations et le nombre total de recherches.

Concentration moyenne des quantifications : attention à regarder cette valeur au regard du pourcentage de quantification voisin, et ne pas donner trop d'importance à une concentration élevée qui ne serait basée que sur un faible nombre de constatations.

NB: La classe « autres » regroupe les usages rodenticides, nématicides, molluscides, antimousse, adjuvants et complexes. En gras, les pesticides d'usage autorisé en 2020.


Par pourcentage de quantification décroissant

Substance quantifiée	% quanti	Cmoy	Substance quantifiée	% quanti	Cmoy	Substance quantifiée	% quanti	Cmoy	Substance quantifiée	% quanti	Cmoy	S
AMPA	99.3	(µg/l) 1.00	2.6-Dichlorobenzamide	40.6	(µg/l) 0,012	Mécoprop-P	15,4	(µg/l) 0.021	Fosetyl	5,0	(µg/l) 0.058	Pyrimi
Dimétachlore	96.4	0.10	Pendiméthaline	38.5	0.016	Nicosulfuron	15,4	0.034	fosetyl-aluminium	5,0	0.062	Clothia
Metolachlor ESA	96.2	0,10	Quinmerac	37.8	0,010	Metconazole	14.0	0,034		4,9	0,062	DCPU
	95,2			37,0				.,.	Imazamox Oxadiazon			
Atrazine déséthyl Diflufenicanil	95,8	0,065	Tébuconazole Clomazone	37,1	0,081	Isoproturon	14,0 14.0	0,060		4,9 4.9	0,050	Flazas
	/	.,		7 -	.,	Fluroxypyr		.,	Dichlorprop		-,	
Métazachlore ESA	93,3	0,20	Diuron	33,6	0,048	Aclonifène	12,6	0,006	Hexazinone	4,2	0,004	Pyracle
Atrazine	92,3	0,024	Flufénacet OXA	32,4	0,072	Alachlor ESA	12,4	0,031	Fénuron	4,2	0,005	Mesos
Métolachlore	84,6	0,10	Flufénacet ESA	32,4	0,14	HCH gamma	11,9	0,002	Benoxacor	4,2	0,015	Triben
Métolachlore énant S	82,5	0,060	Métaldéhyde	32,2	0,11	Fenpropidine	11,9	0,008	Difénoconazole	4,2	0,019	Fluroc
Chloridazone	78,3	0,046	Ethofumésate	31,5	0,11	Triallate	11,9	0,021	Triflusulfuron-met	4,2	0,034	mepiqu
Glyphosate	78,3	0,40	S-Métolachlore	30,0	0,34	Cyprodinil	11,2	0,025	Bixafen	3,6	0,040	Mépiqu
Métolachlore NOA	75,0	0,16	Dimétachlore	29,4	0,012	Métobromuron	11,2	0,23	Piperonyl butoxyde	3,5	0,008	Chlorn
Oxadixyl	74,8	0,015	Boscalid	28,7	0,012	Chlorothalonil-4-hyd	10,7	0,063	Biphényle	3,5	0,016	Ofurace
Métazachlore OXA	74,3	0,085	Terbuthylazine	28,7	0,032	Flutriafol	10,5	0,004	Hydrazide maleique	3,5	0,040	Imazan
Métazachlore	70,6	0,032	Prochloraz	28,0	0,019	DCPMU	10,5	0,016	Propamocarb	3,5	0,21	Amido
Metolachlor OXA	69,5	0,14	Cyproconazole	25,9	0,021	Napropamide	10,5	0,018	Dichlorvos	2,8	0,0004	Pymétr
Atrazine déisopropyl	66,4	0,009	Dinitrocrésol	25,9	0,031	Bromuconazole	10,5	0,025	Fludioxonil	2,8	0,003	lodosu
Déisopropyl-déséthyl-atra	61,4	0,069	Terbutryne	25,2	0,007	Métribuzine	10,5	0,051	Amétryne	2,8	0,006	Endosu
Dimethenamide	59,4	0,080	Azoxystrobine	25,2	0,045	Mésotrione	9,1	0,18	Diméthomorphe	2,8	0,014	Chlorp
Dimethenamid-P	58,7	0,081	2,4-MCPA	23,1	0,22	Métalaxyl	8,4	0,011	Pirimicarbe	2,8	0,028	Acétoc
Bentazone	57,3	0,10	Imidaclopride	22,4	0,018	Bromacil	8,4	0,017	Alachlore	2,8	0,050	Endosu
2-hydroxy atrazine	55,9	0,027	Terbuthylazine dés	22,4	0,031	Tétraconazole	7,7	0,010	Clethodim	2,8	0,14	Zoxam
Propyzamide	53,8	0,25	2,4-D	22,4	0,048	Aminotriazole	7,7	0,082	Piclorame	2,8	0,024	Oryzal
Simazine	52,4	0,010	Mécoprop	21,7	0,036	Flonicamid	7,7	0,26	Clopyralide	2,8	0,029	Carbét
Hydroxyterbuthylazine	51,0	0,014	Diméthénamide OXA	21,6	0,046	Dicamba	7,1	0,28	Endosulfan	2,5	0,001	Prosul
Lénacile	51,0	0,037	Ethidimuron	21,0	0,12	Flusilazole	7,0	0,004	Thiabendazole	2,1	0,003	Fluvali
Propiconazole	49,0	0,013	Carbendazime	20,3	0,008	Flurtamone	7,0	0,025	Monuron	2,1	0,007	Flutola
Dimétachlore-ESA	47,1	0,063	Epoxiconazole	19,6	0,010	Bromoxynil	7,0	0,043	Desméthylisoproturon	2,1	0,034	Thiacle
Prosulfocarbe	46,9	0,14	Anthraquinone	19,6	0,024	Ethyleneuree	6,7	0,17	Phenmédiphame	1,9	0,043	Floras
Dimétachlore-OXA	45,7	0,026	MetNicosulfuron	18,6	0,035	Sulcotrione	5,6	0,029	Dichlorprop-P	1,9	0,095	Pency
Flufénacet	42,7	0,14	Métalaxyl-M	17,5	0,012	Chlorprophame	5,6	0,13	Alachlor OXA	1,9	0,021	
Diméthénamide ESA	41,9	0,051	Métamitrone	17,5	0,30	Chlorothalonil SA	5,4	1,15	MetSulcotrione	1,4	0,28	
Chlortoluron	40,8	0,15	Triclopyr	16,8	0,058	Didéméthylisoproturon	5,0	0,003	Monolinuron	1,4	0,003	

0.1.1	0/	Cmoy
Substance quantifiée	% quanti	(µg/l)
miphos-méthyl	1,4	0,009
hianidine	1,4	0,012
טי	1,4	0,014
asulfuron	1,4	0,015
aben	1,4	0,018
clostrobine	1,4	0,024
osulfuron met	1,4	0,025
enuron-Met	1,4	0,026
ochloridone	1,4	0,038
iquat	1,0	0,027
iquat chlorure	1,0	0,035
ormequat	1,0	0,16
ace	1,0	0,012
zaméthabenz	1,0	0,021
dosulfuron	1,0	0,026
étrozine	1,0	0,038
sulfuron	1,0	0,079
osulfan A	0,7	0,001
orpyriphos-ét	0,7	0,001
ochlore	0,7	0,002
osulfan sulfate	0,7	0,006
amide	0,7	0,006
zalin	0,7	0,007
oétamide	0,7	0,009
sulfuron	0,7	0,010
alinate-tau	0,7	0,013
olanil	0,7	0,015
cloprid	0,7	0,031
asulam	0,7	0,039
cycuron	0,7	0,046

Autres

Herbicide Fongicide Insectifacaricide Régulateur Métabolite

Localisation des ouvrages utilisés pour le calcul des indicateurs et niveaux captés

											_		
Num	Code BSS	COMMUNE	AESN	AQUIBrie - Dépt	ARS	EDP	SUEZ	SEDIF	Véolia	Niveau capté	Nitrates	6 triazines	Sélénium
1	02201X0013	MANDRES (ST THIBAULT	Γ)	*	*		*			CH		*	
2	02201X0036	LESIGNY		*						CH	*	*	
3	02201X0012	MANDRES (BREANT)	*		*		*			CH	*		
4	02204X0019	TOURNAN-EN-BRIE		*						CH + SO	*	*	
5	02205X0098	PERIGNY	*	*	*		*			CH	*	*	
6	02206X0107	LISSY		*						CH + SO	*	*	
7	02207X0029	OZOUER-LE-VOULGIS	*							CH-SO	*	*	
8	02207X0116	COUBERT		*						CH + SO	*	*	
9	02208X0020	GUIGNES		*						CH-SO	*	*	
10	02208X0022	VERNEUIL-L'ETANG		*						CH-SO	*	*	
11	02211X0013	HOUSSAYE-EN-BRIE(LA)		*	*					CH	*		
12	02211X0024	LUMIGNY-NESLES-ORM.	*	*						CH	*	*	
13	02212X0020	PEZARCHES		*						CH	*	*	
14	02213X0024	BEAUTHEIL		*						SO			*
15	02214X0021	DAGNY		*	*					SO	*	*	*
16	02215X0035	COURTOMER		*						CH-SO	*	*	
17	02225X0006	COURCHAMP		*	*					CH-SO-LUT	*	*	П
18	02226X0009	BEAUCHERY ST MARTIN	*		*					CH-SO-LUT	*	*	
19	02226X0056	VILLIERS-SAINT-G.		*	*					CH-SO-LUT	*	*	Г
20	02227X0005	LOUAN-VILLEGRUIS-F.		*						CH-SO	*	*	
21	02581X0043	SEINE-PORT	*	*						CH	*	*	Г
22	02582X0184	VOISENON		*	*			*		CH-SO	*	*	
23	02582X0191	VERT-SAINT-DENIS		*				*		CH-SO	*	*	
24	02582X9012	LIVRY-SUR-SEINE		*					*	CH-SO		*	
25	02583X0050	FOUJU		*						CH-SO	*	*	
26	02587X0014	SAMOREAU		*						CH + ALL	*	*	
27	02587X0037	FONTAINE-LE-PORT		*						CH-SO + ALL	*	*	
28	02591X0093	BREAU		Repr	ise des	analys	es en 2	018		CH + SO	*	*	
29	02592X0075	NANGIS (F3-F4)		*						CH-SO-LUT	*		
30	02593X0023	VIEUX-CHAMPÁGNE		*						CH-SO + ALL	*		
31	02594X0013	SAINT-LOUP-DE-NAUD		*	*					CH-SO-LUT	*	*	\Box
32	02596X0008	VILLENEUVE-LES-B.		*						CH-SO-LUT-YPR	*	*	\vdash
33	02597X0010	DONNEMARIE-DONT.	*	*						CH-SO-LUT	*	*	Т
34	02601X0008	CHALAUTRE-LA-PETITE		*						CH-SO-LUT	*	*	t
35	02602X0013	SAINT-BRICE		*						CH-SO-LUT-YPR	*	*	t
36	02602X0057	LECHELLE		*	*	*				CH-SO-LUT	*	*	\vdash

Liste des ouvrages, niveaux captés et commanditaires des analyses

ANNEXE 7 - LES 1095 PARAMÈTRES RECHERCHÉS DANS LA NAPPE DU CHAMPIGNY EN 2019-2020 ET LE NOMBRE D'ANALYSES POUR CHACUN DES RÉSEAUX

Les analyses sur les eaux souterraines sont issues de différents réseaux de suivi

- le suivi de l'Agence de l'Eau Seine-Normandie (Réseau de Contrôle Opérationnel et Réseau de Contrôle de Surveillance)
- le suivi d'AQUI' Brie financé par le Conseil Départemental de Seine-et-Marne et l'Agence de l'Eau Seine-Normandie.
- le contrôle sanitaire de l'Agence Régionale de Santé des départements de Paris, Seine-et-Marne, Val-de-Marne et Essonne,
- de l'autosurveillance des exploitants Eau de Paris, Eau du Sud Parisien, SEDIF et Veolia sur leurs captages,

Les tableaux ci-après sont classés par catégories de paramètres (benzènes, chrorobenzènes, pesticides...). Dans chaque catégorie, les paramètres sont classés par ordre alphabétique. Les chiffres correspondent au nombre d'analyses de chaque paramètre effectuées par chacun des réseaux. Les cibles des pesticides connus sont précisés par les couleurs. En gras, les pesticides autorisés d'utilisation en 2020.

Fig.		CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA	ΙГ		CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA
Part	Alc	2615	2-Naphtol	22							[:	=	3356	O-Methylaniline	30						
Figure F		5881	Acroleine	19							:	₹	1595	Trichloroaniline-2,4,6	30						
Best		1702	Aldéhyde formique	19							Г	T	6274	Bact et sp sulfito-red				48	3	2	8
Second		2772	Benzaldehyde	19								ı	1447	Coliformes		1		48	3	31	11
Provide the content of the content		5893	Butyraldehyde	11							Н	ı	8257	Cryptosporidium Intègres				2			
Provide the content of the content	l Sa	7713	Chloroacétaldéhyde	19								ı	1065	Cryptosporidium spp				2			
Provide the content of the content	Ιž	5894	Crotonaldehyde	19								ı	6455	Entérocoques		71			3		11
Provide the content of the content	۱ä	1454	Ethanal	19							1	읽	1449	Escherichia coli (E. coli)		71		48	3	31	11
Seption	^	2720	Furaldehyde	19								Ė	1064	Giardia				2			
S896 Pentanal 19		5642	Glutaraldehyde	19								M	8258	Giardia intègres				2			
6427 2-tentbuyl 4-criscal		5943	Isovaleraldehyde	19								ı	5440	Micro-org rev à 22°C		1		7	3	1	8
S474 4-n-nonylphenion		5896	Pentanal	19								ı	5441	Micro-org rev à 36°C		1		7	3	1	8
1098		6427	2-tertbutyl 4-crésol	11								ı	1042	Spores sulfito-réducteurs		1					
Safe		5474	4-n-nonylphénol	22			67					ı	5479	Streptocoques fécaux				48		33	
1958		6369	4nonylphenol diethoxylat	11			67					ı	1098	Volume				2			
Sart 4-octylphenol diethoxylate 11		6366	4nonylphenolmoetoxyla	11			67				ı		7416	1,2-dichloro-4,5-dinitro-benzène	30						
Section Continue		1958	4-nonylphenols	22			67					ı	7886	2-(Ethylamino)toluene	30						
Fig. Sighenor Fig. Fig		6371	4-octylphenol diethoxylate	11								ı	2815	2-chloro-4-nitrotoluene	30						
Fig. Sighenor Fig. Fig	13	6370	4-octylphenol monoethoxylate	11								ı	2613	2-nitrotoluène	30						
Fig. Sighenor Fig. Fig	12	7101	4-sec-Butyl-2,6-di-tert-butylph	76								ı	1932	4-isopropylaniline	30						
Fig. Sighenor Fig. Fig	녈	2766	Bisphenol A	22					2			ı	1114	Benzène	22		4				
Fig. Sighenor Fig. Fig	18	7068	Bisphenol F	22								ı	1610	Butylbenzène sec	22		4				
1994 Octylphenol 22 67 1497 Ehythenol 22 4 1497 Ehythenol 23 1497 Ehythenol 24 1633 Isoponylbenzáne 22 4 1497 Ehythenol 24 1633 Isoponylbenzáne 22 4 1497 Ehythenol 24 1633 Isoponylbenzáne 22 4 1497 Ehythenol 24 1634 Ehythenol 25 1634 Ehythenol 25 1634 Ehythenol 25 1634 Ehythenol 25 1634 Ehythenol 26 1634 Ehythenol	٩	7594	Bisphenol S	75							Н	ı	1611	Butylbenzène tert	11		4				
1959 para-tert-Octylphenol 22 67 120 poctyl phenol 22 67 1850 soboutylphenzene 22 4 4 1850		6598	Nonylphénols lin ou ram	22								ı	1578	Dinitrotoluène-2,4	76						
1920		2904	Octylphenol	22			67					ı	1577	Dinitrotoluène-2,6	76						
		1959	para-tert-Octylphenol	22			67					ı	1497	Ethylbenzène	22		4				
27.52 27.45 - Inchioroefinine 30 1855 Chicora-minine 30 1855		1920	p-octyl phénol	22			67				١,	S	1836	Isobutylbenzène	22						
27.52 27.45 - Inchioroefinine 30 1855 Chicora-minine 30 1855		6600	p-octylphénols (mélange)	22			67					z	1633	Isopropylbenzène	22		4				
27.52 27.45 - Inchioroefinine 30 1855 Chicora-minine 30 1855	Г	2734	2,3,4-Trichloroaniline	30								Z	1509	Mésitylène	22		4				
7848 2-Ethylaniline 30		2732	2,4,5-Trichloroaniline	30								쁴	6342	Musk xylene	30						
2819 3 Chioro-2-methylaniline 30		2818	2-Chloro-6-methylaniline	30								ı	1855	n-Butylbenzène	11		4				
2820 3-Chloro-p-bluidine 30 1837 N-progylbenzène 22 4		7848	2-Ethylaniline	30								ı	2614	Nitrobenzène	76						
2821 4-Chloro-2-toluidine 30 271 6-Chloro-micholuine 30 272 6-Chloro-micholuine 30 273 6-Chloro-micholuine 30 274 6-Chloro-micholuine 30 274 6-Chloro-micholuine 30 30 30 30 30 30 30 3		2819	3-Chloro-2-methylaniline	30								ı	1229	Nitrofène	76	70					
2817 6-Chloro-m-buildine 30		2820	3-Chloro-p-toluidine	30							Ш	Ì	1837	N-propylbenzène	22		4				
1278 Toluène 1278		2821	4-Chloro-2-toluidine	30							Ш	ı	1856	P-cymène	22		4				
		2817	6-Chloro-m-toluidine	30								ı	1541	Styrène	22		4				
1666 Chloro-2 Toluldine-p 30 2925 Xy/em embla para 22 4 1930 Chloro-alline-2 30 1932 Xy/em-embla para 22 4 1952 Chloroanline-3 30 1922 Xy/em-embla para 22 4 1952 Chloroanline-3 30 1922 Xy/em-embla para 22 4 1952 Xy/em-embla para 22 24 1952	١,,	1607	Benzidine	45			67					ı	1278	Toluène	22		4				
1666 Chloro-2 Toluldine-p 30 2925 Xy/em embla para 22 4 1930 Chloro-alline-2 30 1932 Xy/em-embla para 22 4 1952 Chloroanline-3 30 1922 Xy/em-embla para 22 4 1952 Chloroanline-3 30 1922 Xy/em-embla para 22 4 1952 Xy/em-embla para 22 24 1952	ΙË	6121	BzenamNeth3meth	30								ı	1857	Triméthylbenzène-1,2,3	22						
1666 Chloro-2 Toluldine-p 30 2925 Xy/em embla para 22 4 1930 Chloro-alline-2 30 1932 Xy/em-embla para 22 4 1952 Chloroanline-3 30 1922 Xy/em-embla para 22 4 1952 Chloroanline-3 30 1922 Xy/em-embla para 22 4 1952 Xy/em-embla para 22 24 1952	١ź	1594	Chloro Nitroaniline-2	30								Ì	1609	Triméthylbenzène-1,2,4	22		4				
1592 Chloroaniline-3 30	<	1606	Chloro-2 Toluidine-p	30								ı	2925	Xylène méta para	22		4				
1591 Chloroaniline-4 30 2 2814 2 2 2 2 2 2 2 2 2		1593	Chloroaniline-2	30								ı	1292	Xylène-ortho	22		4				
1591 Chloropaniline-4 30		1592	Chloroaniline-3	30							l I		2536	1,2,3,5 tetrachlorobenzen	76						
1589 Dichtoroanline-2.4 76		1591	Chloroaniline-4	30								띩	2814	2-Chloro-3-nitrotoluene	30						
1587 Dichloroaniline-2.6 30		1589	Dichloroaniline-2,4	76								삙	2906	2-Chloro-5-nitrotoluene	30						
1586 Dichlorosaniline-3.4 69 2905 4-Chloro-3-nitrotoluene 30 1484 Dichlorobenzidine-3.3 30 2822 5-Chlorosmirotoluene 30 2822 5-Chlorosmirotoluene 30 3351 3444 Dichlorobenzidine-3.3 30 30 30 30 30 30 30		1587	Dichloroaniline-2,6	30								副	7883	3-amino-4-chloro-1-trifluorométhylbenz	30						
1484 Dichlorobenzidine-3,3' 30 \frac{\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fracc}\fr		1586	Dichloroaniline-3,4	69								씱	2905	4-Chloro-3-nitrotoluene	30						
3351 m-Methylaniline 30 2816 Benzene, 1-chloro-2-methyl-3-nitro- 30		1484	Dichlorobenzidine-3,3'	30								빍	2822	5-Chloroaminotoluene	30						
		3351	m-Methylaniline	30	T						l l'	기	2816	Benzene, 1-chloro-2-methyl-3-nitro-	30						

CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA		Cods	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA		CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLI
1632	Bromobenzène	22		4						6716	Amiodarone	30								5399	17alpha-Estradiol						2	
1612	Chloro-1 Dinitrobenz2,4	30							11	7543	Benzotriazole	75							l =	5397	Estradiol						2	
1605	Chloro-4 Nitrotoluène-2	30							11	6652	beta-Hexabromocyclododecane	46							운	5396	Estrone					\Box	2	_
1467	Chlorobenzène	22		4					11	1958	C10-13-chloroalcanes	9								2629	Ethynyl Estradiol						2	_
1469	Chloronitrobenzène-1,2	30							1	6519	Cafeine			76			2			6870	Acide niflumique				67			_
1468	Chloronitrobenzène-1,3	30							11	1580	Dioxane-1,4	22								5361	Atenolol					\Box	2	
1470	Chloronitrobenzène-1,4	30							11	8303	DNBPA	45								5366	Bezafibrate						2	_
1602	Chlorotoluène-2	11		4					1	1493	EDTA	22								5296	Carbamazepine					\neg	2	
1601	Chlorotoluène-3	22		4					11	1494	Epichlorohydrine	22			67					5349	Diclofenac					-	2	-
1600	Chlorotoluène-4	11		4					11		Ethyl tert-butyl ether	- 11								5365	Gemfibrozil					\Box	2	$\overline{}$
2715	Chlorure de benzylidène	11							11	6618	Galaxolide	76								5350	Ibuprofene					-	2	_
1165	Dichlorobenzène 12	22		4	-				11	6653		46							Ξ,	5377	lopromide					-	2	_
	Dichlorobenzène 13	22		4					28	7722		45							₽	6755	Metformine	45				-		_
1166	Dichlorobenzène 14	22		4					1 ≝	1512		22							~	5362	Metoprolol	- 12				$\overline{}$	2	_
	Dichloronitrobenzène-2.3	30		_	_		_		11°	6664		46	-					-			Acide acetylsalic	_				-	2	
1616	Dichloronitrobenzène-2.4	30			_	1			11	8253	,	45	-					-		5355	Acide salicylique	_			67	-	2	$\overline{}$
1615	Dichloronitrobenzène-2.5	30			-		_		11	2049		5						_		6719	Amoxicilline	_			- 07	\vdash	2	
1614	Dichloronitrobenzene-2,5	30	-	-	_	-	-		11	-	,	45	_					_			Erythromycine	-				\vdash	2	_
1613	Dichloronitrobenzene-3,4 Dichloronitrobenzene-3.5	76	_		-	-	-		11	5299	N,N-Dimet-tolylsulphamid N-Butvlbenzenesulfonamide	76	-	_	67			_		5354	Paracetamol	-	-			\vdash	2	_
		76					-		11			75			6/			_				_				\vdash	2	_
1199	Hexachlorobenzène		70		67	_	_	2	11	6686			-					_	\vdash	5356	Sulfamethoxazole		_			\vdash	2	_
1888	Pentachlorobenzène	76			84				11		Perchlorate	56		44	51			_		1370	Aluminium	75			35	3	<u> </u>	_
2010	Tétrachlorobenz1,2,3,4	30	-	-	-	-	_		11	6830		11						_		1376	Antimoine	75	70			\vdash		2
1631	Tetrachlorobenzèn-1,2,4,5	76		4	_		_		41	1847		76	70		67					1368	Argent	75				\vdash	\vdash	_
1630	Trichlorobenzène-1,2,3	76		4	_				41	6660		75								1369	Arsenic	75	70		22	\vdash	<u> </u>	2
1283	Trichlorobenzène-1,2,4	76		4					41	7881		76									Béryllium	75				\vdash		_
1629	Trichlorobenzène-1,3,5	76		4					┦┝	6989					67					1362	Bore	75	70	4	43	-	<u></u>	2
1751	Bromates	22							11	2725		22								1388	Cadmium	75	70		7		_	2
1122	Bromoforme	22		4				2	11	1453	Acénaphtène	76		4						1389	Chrome	75			22			
1398	Chlore libre	75							11	1622		76								1371	Chrome VI	41						_
1399	Chlore total	75		76					Ш	1458	Anthracène	76		4						1379	Cobalt	75						
1735	Chlorites	22								1082	Benzo(a)anthracène	76		3						1392	Cuivre	75			7			
1135	Chloroforme	22		4				2		1115	Benzo(a)pyrène	76		3						1084	Cyanures libres	22						
1738	Dibromoacétonitrile	22							11	1116	Benzo(b)fluoranthène	76		4					lš	1390	Cyanures totaux	22						· -
3335	Dibromodichloromethane			4					11	1118	Benzo(g,h,i)pérylène	76		4					18	1380	Etain	75						_
1513	Dibromométhane	22		4					11	1117	Benzo(k)fluoranthène	76		4					Z	1393	Fer	75	70	4	44	6	1	8
1158	Dibromomonochlorométhane	22		4				2	11	1603	Chloronaphtalène-1	30								1364	Lithium	73						_
1740	Dichloroacétonitrile	22							11	1604	Chloronaphtalène-2	30								1394	Manganèse	75	70	4	22	6	1	17
1167	Dichloromonobromométhane	22						2	1 8	1476	Chrysène	76		4						1387	Mercure	56			14	-		_
6321	Monochloramine	22							11+	1621	Dibenzo(a.h)anthracène	76		4						1395	Molybdène	75				\Box		
6175	N-Nitrosomorpholine	45							11	1191	Fluoranthène	76		4						1386	Nickel	75	70		22	\neg	$\overline{}$	2
7816	4-méthoxycinnamate de 2-éth.hex	30							11	1623		76		4						2793	Platine	30				$\overline{}$		-
5426	Acide dibromoacétique	11			_		_		11	2962		- 10	70					2		1382	Plomb	75			7	-		
1481	Acide dichloroacétique	22			<u> </u>		1		11	1204		76		4						2555	Thallium	75				-		_
	Acide monobromoacétique	11	_	_	+		 		11	2903		46		-1				_		1373	Titane	75		\vdash		\vdash		-
1465	Acide monochloroacétique	22	 	 	64	 	+		H	1619		76				\vdash	-	-		1361	Uranium	75	_	\vdash		\vdash	-	-
1521	Acide monocnioroacetique Acide nitrilotriacétique	22	+	_	104	_	+		ł I	1618		76	-			\vdash	-	-		1384	Vanadium	75		-	_	$\overline{}$	-	$\overline{}$
_			-	-	_	-	1		11	_		76				\vdash		_		1384			-		7	\vdash	├	_
1546	Acide trichloroacétique	22	-	-	-	-	1		11	1517			\rightarrow	4		\vdash	-		H-	1383 7878	Zinc	75 22	-	\vdash	/	\vdash	<u> </u>	
	Acrylamide	22	1	1	1	1	1	1	1.1	1524	Phénanthrène	76		4							1-bromo-2-chloroéthane		1			, 1	. '	i

ANNEXES

	CodS	Paramètre	AESN	ARS	CD 77	FDP	SEDIF	SUF7	VEOLIA		CodS	Paramètre	AESN	ARS	CD 77	FDP	SEDIE	SUEZ	/FOLIA		CodS	Paramètre	AESN	ARS	CD 77	FNP	SEDIE	SUEZ	VEOL I
	2065	3 chloropropène	22	ANO	4	LUI	JLUII	JULE	VLOLIA	\vdash	2917	2.3'.4.6'tétrabromodiph	9	ANO	CDII	LUI	JLDII	JULE	LOLIA			Acide perfluoro-octanoïque	11	AINS	CD11	LUF	JLDII	JULE	VLOLIN
		Bromochlorométhane	22		4	_	_	_	_		2920		9		-	-		-		ñ		Acide sulfonique de perfluo	11	_			-	-	
	1736	Chlorométhane	22		-	_	1	-			6231	BDE 181	9							~		Sulfonate de perfluoroctane	11	1			-	_	<u> </u>
	2611	Chloroprène	22			-	+	-	\vdash	1	5997	BDE 205	4							_		2 Chloro 6 méthyl phénol	22	-			-	\vdash	\vdash
	1753		22			-	+	-	_	8		BDE 77				-		-					22	-	_		-	\vdash	\vdash
		Chlorure de vinyle	22		4	_	-	-	_	1 "	7437		9					-				2,3 diméthylphénol	11	-					-
		cis-1,3- dichloropropène			_		-	-			1815	Décabromodiphényl oxyde						-				2,6 diméthylphénol		-					<u> </u>
		Dibromo-1,2 chloro-3 prop	22		4	67	-	-	_		2609	Octabromodiphényléther	5									2,6-di-tert-butyl-4-méthylphénol	30	-					⊢—
	1498	Dibromoéthane-1,2	22		4	7	-	-	_	\vdash	8281	PBDE 156	4									2-Éthylphenol	22	-			<u> </u>		\vdash
	1163	Dichloréthène 12	22			_	-				2770	Indice Arochlor 5460	5									2-t-butylphénol	22				<u> </u>		-
	3366	Dichloroethane	11			_	-				1242	PCB 101	76	70								3,4-Dimethylphenol	22				 '	<u> </u>	<u> </u>
	1160	Dichloroéthane 11	22		4	7	_	_	2		1627	PCB 105	76	70				-				3,5-Diméthylphénol	22	_	_		<u> </u>	<u> </u>	—
	1161	Dichloroéthane 12	22		4	7			2		5433	PCB 114	76									3-Ethylphenol	11						_
	1162	Dichloroéthène 11	22		4	7			2		1243	PCB 118	76	70								4-Ethylphenol	11				'		<u> </u>
	1727	Dichloroéthène-1,2 trans	22		4				2		5434	PCB 123	76									4-tert-butylphénol	22			67	'		
	1456	Dichloroéthylène-1,2 cis	22		4						2943	PCB 125	76									5,6,7,8-Tetrahydro-2-naphtol	11				'		
	1168	Dichlorométhane	22		4	7			2		1884	PCB 128	30								1635	Chloro-2 Méthylphénol-5	22				'		<u> </u>
	1655	Dichloropropane-1,2	22		4						1244	PCB 138	76	70							1634	Chloro-4 Méthylphénol-2	11					1	
LF	1654	Dichloropropane-1,3	22		4						7888	PCB 143	76								1636	Chloro-4 Méthylphénol-3	22					-	
IέL	2081	Dichloropropane-2,2	22		4						1885	PCB 149	76	70							1471	Chlorophénol-2	22						
١٣Г	2082	Dichloropropène-1,1	22		4						1245	PCB 153	76	70							1651	Chlorophénol-3	11						
	1487	Dichloropropène-1,3	22								2032	PCB 156	30								1650	Chlorophénol-4	22				-		
	1195	Fréon 11	22								5435	PCB 157	30								1645	Dichlorophénol-2,3	11						
	1196	Fréon 113	22						2		5436	PCB 167	76								1486	Dichlorophénol-2.4	22						
	1485	Fréon 12	22								1626	PCB 170	76	70							1649	Dichlorophénol-2.5	22				-		
	1652	Hexachlorobutadiène	76		4						3164	PCB 18	30	70							1648	Dichlorophénol-2.6	22				-		
	1656	Hexachloroéthane	22		4						1246	PCB 180	76	70						H.	1647	Dichlorophénol-3.4	22				-	T -	
	2612	Hexachloropentadiène	30							5	5437	PCB 189	76							۵.		Dichlorophénol-3.5	22				_	_	
	5924	Pentachloroethane	11			†	1				1625	PCB 194	76									Diméthylphénol-2.4	22			67	-	-	
	1276	Tétrachi.Carbone	22		4	7			2		5301	PCB 20	76						_			Diméthylphénol-2,5	22			-		\vdash	
	1270	Tétrachloréthane-1.1.1.2	22		4						1624	PCB 209	76									Hexachlorophene	46				-	\vdash	
	1271	Tétrachloréthane-1,1,2	22		4	_	_	_	-		1239	PCB 28	76	70	-	-		-				Méthylphénol-2	22	_		20	-	-	
	1272	Tétrachloréthène	22	70	4	7	1	_	2		1886	PCB 31	76	70								Méthylphénol-3	22	-		67	-		
	1835	trans-1,3-dichloropropène	22	70	4		_		-		1240	PCB 35	76	70								Méthylphénol-4	22			67	-	\vdash	
	1284	Trichloréthane-1.1.1	22		4	7			2		1628	PCB 44	30	70								Naphtol-1	22			- 01	-	\vdash	<u> </u>
	1285	Trichloréthane-1,1,1	22		4	+-	_		-		1241	PCB 52	76	70				_			1637	Nitrophénol-2	22				-	\vdash	\vdash
	1286	Trichloréthylène	22	70	4	7	+	_	2		2048	PCB 54	76	,,,	\vdash			\vdash				Para-sec-butylphenol	22	_		67	-	\vdash	\vdash
	1854	Trichloropropane-1,2,3	22	70	4	7	+	_	-	1	5803	PCB 54	76	-	\vdash	\vdash		\vdash				Pentachlorophénol	22	70	_	101	-	—	\vdash
-			9		-	+-	_	_	-	1	5432	PCB 81	76					-				Phénol	22	10	_	101		₩	\vdash
		2,2',3,4,4'- pentabromodiphe			-	-	-	_	\vdash									_						-	_				\vdash
		2,2',3,4,4',5'- hexabromodiph	9			-	-	-	\vdash		1089	PCB126	30									p-tert-Amylphenol	11	-	-			₩	⊢—
		2,2',3,4,4',5',6- heptabromodiph	9		-	-	-	-	\vdash		1090	PCB169	76		\vdash			\vdash				Tétrachlorophénol-2,3,4,5	22	-	-			├ ─-'	⊢
		2,2',4- tribromodiphényléther	5		_	-	-	-	_	1	1091	PCB77	76					\vdash				Tétrachlorophénol-2,3,4,6	22	-	_			₩.	-
	2919	2,2',4,4'- tétrabromodiph	9				-	_			1249	PCBs A1242	5									Tétrachlorophénol-2,3,5,6	22	_			<u> </u>	<u> </u>	<u> </u>
		2,2',4,4',5- pentabromodi	9				-	_			1250	PCBs A1254	5									Trichlorophénol-2,3,4	22	_			<u> </u>	<u> </u>	<u> </u>
- ⊢		2,2',4,4',5,5'- hexabromo	9		_		_	_	\perp	\perp	1251	PCBs A1260	5								_	Trichlorophénol-2,3,5	11		\vdash		<u> </u>	<u></u> '	<u> </u>
	2911	2,2',4,4',5,6'- hexabromodiph	9				_				6550	Acide perfluorodecane sulfo	- 11									Trichlorophénol-2,3,6	22					<u> </u>	
		2,2',4,4',6- pentabromodi	9							1 2	6509	Acide perfluoro-decanoïque	- 11									Trichlorophénol-2,4,5	22				'	<u> </u>	
		2,3,3',4,4',5,6- heptabrodiphe	9							=	5977	Acide perfluoro-n-heptanoïque	- 11			I 7		LI				Trichlorophénol-2,4,6	22						L
П	2918	2,3',4,4'- tétrabromodiphe	9								5978	Acide perfluoro-n-hexanoïque	- 11								1723	Trichlorophénol-3,4,5	22						

March Marc		0.10	Paramètre	AFON	400	00.7	FDI		PEDIE	CUET	VEOLIA		0.10	Paramètre	AFON	400	0D 77	FDD	CEDIE	OUEZ	VEOLIA		0.10	Paramètre	AFON	ARS	00.77	FDD	CEDIE	CUEZ	VEOLIA
Best	-	CodS		AESN	ARS	CD7	EDI	, 91	EUIF	SUEZ	VEULIA		CodS		AESN	ARS	CD 77	EDP	SEDIF				CodS		AESN	AKS	CD 77	EDP	SEDIF	SUEZ	VEULIA
March Marc						+		+	-		_					70	4		3	30	16				/6		/6	8/	10	\vdash	-
Part						+	6/	+	-	2						200			_		- 40				- 00	70		_	-	\vdash	-
Part						_		+	_		_	J. j.					4	83	3	30	16					700		0.0			_
Second content						_		_	_			1 =	_		_										/6	_	/6	95	10	32	- 2
Part Column Col						_		_	_			8			75	71	4		4	10	18								لـــــــا	\vdash	\rightarrow
Section Control Particular Fig. Control Particular Fig. Control Particular Fig. Control Fig. Fi						_			_			l se														70				\leftarrow	
\$\frac{8}{2540}\$ \text{ Decorphismates } \frac{3}{2540}\$ \text{ Decorphismates } \frac	ES							\perp				-			76		4			30										$\overline{}$	
## Company phrases 30	3																									_			_		
Process	≨		Di-n-octyl phthalate										1295	Turbidité Néphélométrique	72	71	4	83		20	19		1109	Atrazine déisopropyl	76	70	76	73	10	35	38
Extra Control First Control	=			30								1	7981	1,2,4-Triazin-5(4H)-one		70							3160	Atrazine déisopropyl-2-hyd	76	70		67			
Fig. Characterist Fig. Characterist Fig. Characterist Fig. Characterist Fig. Fig		2541	Dipropyl phtalate	30									1264	2,4,5-T	46	70							1108	Atrazine déséthyl	76	70	76	101	10	35	38
Fig. Fig. Fisher Protection Fisher Fis		6236	Ditridecyl phthalate	30								1	1141	2,4-D	76	70	76	67					2014	Azaconazole	76	70		73			
Part		6617	Ethyl 2-Hexyl Phtalate	75								1	6942	2,4-D 2-Ethylhexyl es		70							2015	Azamétiphos	75	70					
1982 Phelanius de demithyle 76		1462	n-Butyl Phtalate	76			67						2872	2,4-D isoprop ester	76	70		67					2937	Azimsulfuron		70					\neg
Fig. Package		2780	OctylButylPhtalate	30								1	1142	2,4-DB	30	70		67					1110	Azinphos éthyl	30	70		82			
1319 Accordance 76 70 76 22 3 3 3 5		1489	Phthalate de diméthyle	76				\top					1212	2.4-MCPA	76	70	76	67					1111	Azinphos méthyl	30	70		82	\neg	\Box	\neg
1396 Recymen 75 4 4 4 4 4 1 1 1 1 1		6449	Absorbance254 nm				80	\top		2			1213	2.4-MCPB	76	70		66					1951	Azoxystrobine	76	70	76	73	-	\Box	-
1398 Bayman 75		1335	Ammonium	76	70	76	22		3	30	15		2011	2.6-Dichlorobenzamide	76	70		82					7522	Béflubutamide	76			67	-		\neg
Fig. Baryum 75		1319	Azote Kieldahl			76	\top					1	1832	2-hydroxy atrazine	76	70	76	73	10	8	11		1687	Benalaxvi	76	70		81	-	-	-
Part			,,,,,,	75			44	+						7			-12		- 1	-									-	-	-
Fig. Strict Str					70	_				7	2							OL.										67	-	-	-
1374 Calcium					- 10	+ -					-							73										- 01	-	-	-
1328 Carbonates 76 70 4 23 3 2 21					70	1			3	30	16	1				-10					_	l		Rénomul					-	-	-
September Sept						_	- ~							1	75	70		07				0		Panavasas		70	70	67	-	-	-
September Sept						_	22										_	cc	_			Įξŀ			10		70	01	-	-	-
Fig.					70	+ *	- 22	+	3	2	21					70	_		_			۵.						_	\rightarrow	\vdash	-
1337 Chicrures						+-	+	+	-								_		_		_				70	_	70	70	-	\vdash	-
6462 COZ agressif		_		_				+	_		- 40				_	70	70								/6	_	/6	13	-	-	-
No. Procession				/6	70	/6	83	+	3		18	2				70	/b		_									_	-	\vdash	-
Fig.				-		_	_	+	_			Ιź			30			6/								70				\vdash	
Fig.	- u			-		+-		+	_	30		-																		\vdash	-
Part	Ē			_		+		_	_							_										_			$\overline{}$	\vdash	
Fig.	1 7			75	70				3	10		1																82		\vdash	
1372 Magnésium	Š															70														\longrightarrow	
1305 Adulares en susp 76 76 77 76 83 27 33 18 1102 Adicable 76 70 76 122 33 18 1102 Adicable 75 67 76 70 76 122 33 18 1102 Adicable 75 67 76 70 76 121 33 2 16 1807 Adicable 75 67 76 70 76 82 1102 Adicable 75 67 102 1308 Adicable 75 67 1008 Adicable 75 67 1008 Adicable 75 67 1008 Adicable 75 70 76 82 1008 Adicable 75 70 75 82 1008 75 70 75 82 1008 75 75 75 75 75 75 75 7	£																													\vdash	
1340 Nitrates			. 0	_	70	4	83	\perp	3	30	16				_				6						_	70		_		\longrightarrow	
1339 Nitrites	1															70	76			35											
1433 Orthophosphates 76	1		Nitrates															67								70	76	82			
1311 Oxygline discous 75 68 4 7 110 1103 Addrine 76 70 67 2 1859 Stromadiolone 30 67 1153 Brompchos Methyl 76 70 1154 Brompchos Methyl 76 70 1154 Brompchos Methyl 76 70 1155 Brompchos Methyl 76 70 76 70 1155 Brompchos Methyl 76 70 76 70 1155 Brompchos Methyl 76 70 76 76					70					2	16					70								Brodifacoum							
1302 pH 73 119 4 84 34 18 750 Allycycarbe 70 1123 Brancoptos Methyl 76 70 1123 Brancoptos Methyl 76 70 1230 Prosphore lotal 76 70 4 83 3 30 16 1104 Ametycarbe 76 70 4 73 35 1125 Brancoptos Methyl 76 70 1230 Prosphore lotal 76 70 4 83 3 30 16 1104 Ametycarbe 76 70 4 73 35 1125 Brancoptos Methyl 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 1230 Prosphore lotal 76 70 70		1433	Orthophosphates	76		4	22		3	1			1806	Aldicarbe sulfoxyde	45			67					1686	Bromacil	76	70	76	82			
6488 pH mesuré à l'équilibre 70 70 45 3 1812 Alpha-cyperméthrine 76 67 18130 Phosphore lotal 76 70 4 83 3 30 16 1814 Amétrine 76 70 4 73 35 1812 Bromoyall 76 70 70 6 71 1330 Potential REDOX 74 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1311	Oxygène dissous	75	69	4	7			10			1103	Aldrine	76	70		67			2		1859	Bromadiolone	30			67			
1307 Pricesphore botal 76 70 45 3		1302	pH	73	119	4	84			34	18		7501	Allyxycarbe		70							1123	Bromophos éthyl	76	70					
1367 Potassium 76 70 4 83 3 30 16 1104 Amelaryne 76 70 4 73 35 1125 Bromosynil catanate 76 70 76 67 1339 Potenies REDOX 74 5699 Amidiaturon 46 70 66 1542 Silicates 75 70 70 70 70 70 70 70		6488	pH mesuré à l'équilibre		70								1812	Alpha-cyperméthrine	76			67					1124	Bromophos Méthyl	76	70				\Box	\neg
1330 Potential REDOX 74	1	1350	Phosphore total	76	70		45		3				7842	Ametoctradine	45							1	1685	Bromopropylate	76	70			\neg	-	
1330 Potential REDOX 74		1367	Potassium	76	70	4	83		3	30	16		1104	Amétryne	76	70	4	73			35		1125	Bromoxynil	76	70	76	67	-	-	\neg
1385 Sélénium 75 70 3 22 2 2 2 2 2 2 2			Potentiel REDOX		Ť	Ť	1																						-	\Box	
1342 Slicates 75 70 523 Aminocarbe 70 1530 Bromure de méthyle 22 67					70	3	22				2				46			66								70			-	-	
						Ť	+	+	-																				-	-	
	1	1348	Silice	30		4	22	+	\rightarrow		\vdash		7580	Aminopyralid				67			\vdash		7502	Bufencarbe		70			-	-	-

ANNEXES

	CodS	Paramètre	AESN	ARS	CD 77	EDP	CEDIE	SUEZ	VEOLIA		CodS	Paramètre	AESN	ARS	CD 77	EDP	CEDIE	CUEZ	VEOLIA		CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA
\vdash	1861		75	AKS	CD II	67 67	SEUIF	SUEZ	VEULIA	\vdash	1813		30	AKS	CD11	67 67	SEUIF	SUEZ	VEULIA	_	1154	Déméton-S-Méthyl-Sulf.	30 30	70	CD11	EUP	SEDIF	SUEZ	VEULIA
1 1		Bupirimate		70						1 -		Chlorthiamide	30	- 70	\vdash	6/		_			1697	,		/0			\vdash		
1 -	1862	Buprofézine	30	70		67	-			1 -	5723	Chlorthiophos		70	H				-		_	Depalléthrine	30					\rightarrow	
1 -	7885	Butachlor ESA sodium	76							-	1136	Chlortoluron	76	70	76	101	10	35	2		2051	Déséthyl-terbuméthon	76	70	4	73	10		
1 -	7884	Butachlor OA	76				_				5481	Cinosulfuron		70	\vdash						2980	Desmediphame	30			67	\vdash		
	5710	Butamifos		70						1 1	2978	Clethodim	75	70	\vdash	67					2738	Desméthylisoproturon	76	70		67	\perp	8	
1 1	1126	Butraline	30	70		67					2095	Clodinafop-propargyl		70	\vdash	73					2737	Desmethylnorflurazon	76	70		73			
	1531	Buturon	76	70							1868	Clofentézine	45	<u> </u>							1155	Desmétryne	76	70	4	73			35
1 1	7038	Butylate		70							2017	Clomazone	76	70	4	82					1156	Diallate	76	70					
1 L	1863	Cadusafos	76	70		80				1 L	1810	Clopyralide	76	70		67					1157	Diazinon	76	70		101			
1 L	1127	Captafol	30							1 L	2018	Cloquintocet-mexyl	30	70		82					1480	Dicamba	76	70	4	67			
1 L	1128	Captane	30			101				1 L	6389	Clothianidine	76	70		67					1679	Dichlobenil	76	70		67			
1 L	1463	Carbaryl	76	70		67				1 L	7583	CMPU		70							1159	Dichlofenthion	30	70					
Ιſ	1129	Carbendazime	76	70	76	101		35		1 [2972	Coumafène	46	70		67					1360	Dichlofluanide	76						
	1333	Carbétamide	76	70	76	72					1682	Coumaphos	30	70							2929	Dichlormide	76			82			
1 [1130	Carbofuran	76	70		101		35			2019	Coumatétralyl	76	70							2981	Dichlorophène	76	70		67			
1 [1131	Carbophénothion	76	70						1 [5275	Cresol				27					1169	Dichlorprop	76	70	76	64			
	1864	Carbosulfan	30			67					5724	Crotoxyphos		70							2544	Dichlorprop-P	76			64			
1 [2975	Carboxine	30	70		66				1 1	5725	Crufomate		70							1170	Dichloryos	75	70		82			
1 1	2976	Carfentrazone-ethyl	75	70		73				1 1	1137	Cvanazine	76	70	4	101		35	37		1171	Diclofop méthyl	30	70		82		-	
1 1	1865	Chinométhionate	76			82				1 1	5726	Cyanofenphos		70							1172	Dicofol	76	70		101			
1 1	7500	chlorantraniliprole	45							1 1	5567	Cvazofamid	30		\neg	67					5525	Dicrotophos		70			-	-	
1 1	2016	Chlorbromuron	76	70		66				1 1	5568	Cycloate		70							2847	Didéméthylisoproturon	76	70		67			
1 1	1336	Chlorbufame	76							1 1	2729	Cycloxydime	46	70		81					1173		76	70		67			2
0	1132	Chlordane	30	70		66				0	1696	Cycluron	46	70		0.				0	1402	Diéthofencarbe	76	70		67	-		
PHYTO	7010	Chlordane alpha	76	70		89			-	≩ ⊦	1681	Cyfluthrine	30	70	-	82		_		₹	2982	Difenacoum	46	70			\vdash	-	
1 -	1757	Chlordane béta	30	70		62				1 -	1139	Cymoxanil	76	70		66		_		10	1905	Difénoconazole	76	70		73	\vdash		
1 1	1758	Chlordane gamma	30	70		32				1 1	1140	Cyperméthrine	76	70		82		_			5524	Difenoxuron	70	70		13	\vdash	-	
1 1	1866	Chlordécone	76			32				1 1	1680	Cyproconazole	76	70	76	73					2983	Difethialone	30	70			\vdash	\rightarrow	
1 1	5553	Chlorfenson	70	70						1 -	1359	Cyprodinil	76	70	76	73		_			1488	Diflubenzuron	76	70		73	\vdash		
1 -	1464	Chlorfenvinohos	70	70		101	-		_	1 -		-71	45	70	10	13		_			1814	Diflutenicanil	76	70	70	73	\vdash	\rightarrow	
1 -	2950	Chlorfluazuron	76 76	70		101				1 -	7801 2897	cyprosulfamide Cyromazine	75	70	\vdash	73					1870	Direction	76	70	76	67	\vdash		
1 -			76	70	70	700			_	1 -	7503	.,	15	70	\vdash	13							/6	70		6/	\vdash		_
1 -	1133	Chloridazone	/b	70	76	73				1 -		Cythioate			\vdash			_			7142	Dimepiperate	70		70		\vdash		
1 -	5522	Chlorimuron-ethyl		70			-			1 -	5930	Daimuron		70	\vdash			_			2546	Dimétachlore	76	70	76	82	\vdash	\rightarrow	
1 -	1134	Chlorméphos	76	70						-	2094	Dalapon	30	 '	\vdash						7727	Dimétachlore CGA	76			67	\vdash		
1 -	5554	Chlormequat	76			67				-	5597	Daminozide	75	<u></u> '	\vdash	67					6381	Dimétachlore-ESA	76			67	\vdash		
-	2097	Chloroméquat cl				67					1869	Dazomet	30	<u> </u>	\vdash	67					6380	Dimétachlore-OXA	76			67		\rightarrow	
1	1341	Chloronèbe	30	70		66	_			1	1929	DCPMU	76	70	76	73					5737	Dimethametryn		70			\vdash		
1 4	1684	Chlorophacinone	30				_			1 4	1930	DCPU	75	70	\vdash	32					1678	Dimethenamide	76	70	4	81	\vdash	11	
1	1473	Chlorothalonil	76	70		82					1143	DDD 24'	76	70	\vdash	67					6865	Diméthénamide ESA	76			67			
	7717	Chlorothalonil SA	75								1144	DDD 44'	76	70	\vdash	67			2		7735	Diméthénamide OXA	76			67			
1 1	7715	Chlorothalonil-4-hyd	30							1 1	1145	DDE 24'	76	70	ш	67					5617	Dimethenamid-P	76			67			
	1683	Chloroxuron	76	70		73					1146	DDE 44'	76	70	\square	67			2		1175	Diméthoate	76	70		101			
	1474	Chlorprophame	76	70	76	82				1 L	1147	DDT 24'	76	70		67					1403	Diméthomorphe	76	70		66			
[1083	Chlorpyriphos-éthyl	76	70		101				1 [1148	DDT 44'	76	70		67			2		6972	Dimethylvinphos		70				$oldsymbol{\bot}$	
	1540	Chlorpyriphos-méthyl	76	70		101					1830	DEDIA	76	70	4	72	10	25	36		1698	Dimétilan		70					
1 [1353	Chlorsulfuron	76	70		73				Ιſ	1149	Deltaméthrine	76	70		67		35			5748	Dimoxystrobine	46			67			
	1867	Chlorthal				67				1 [1150	Déméton-O	75			67					1871	Diniconazole	76	70					
1 1	2966	Chlorthal-diméthyl	76	70						1 [1153	Déméton-S-Méthyl	75	70							1490	Dinitrocrésol	76	70		73	\Box		

	CodS	Paramètre	AESN	ARS	CD 77		SEDIF	SUEZ	VEOLIA		CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA		CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA
	5619	Dinocap	30			67					1188	Fenpropathrine	30	70							1908	Furalaxyl	76	70		73			\Box
	1491	Dinosèbe	46	70		73					1700	Fenpropidine	76	70	76	73					2567	Furathiocarbe	76	70		73			
	1176	Dinoterbe	76	70		67					1189	Fenpropimorphe	76	70	76	73					7441	Furilazole		70					
	1699	Diquat	76			67					1190	Fenthion	76	70		66					1526	Glufosinate	30			67		32	
	1492	Disulfoton	30	70		81					1500	Fénuron	76	70	76						1506	Glyphosate	76	70	76	95	10	32	2
	1177	Diuron	76	70	76	101	10	35	2		1701	Fenvalérate	30								5508	Halosulfuron-methyl		70					
	2933	Dodine				67					2009	Fipronil	46	70	4	73					2047	Haloxyfop		70					
	5751	Edifenphos		70							6260	Fipronil sulfone	46								7783	Haloxyfop méthyl	30			67			
	1743	Endosulfan	30	70		67					1840	Flamprop-isopropyl		70							1833	Haloxyfop-éthoxyéthyl		70		73			
	1178	Endosulfan A	76	70		101			2		6539	Flamprop-methyl		70							1909	Haloxyfop-méthyl (R)		70		32			
	1179	Endosulfan B	76	70		101			2		1939	Flazasulfuron	76	70	4	67			-		1200	HCH alpha	76	70		67			2
	1742	Endosulfan sulfate	76	70		84			2		6393	Flonicamid	75	70		73					1201	HCH bêta	76	70		67			2
	1181	Endrine	76	70		67	_		2		2810	Florasulam	76	70	4	73					1202	HCH delta	76	70		67			2
	2941	Endrine aldehyde	46	70		- 0,			2		6545	Fluazifoo	- 10	70					-		2046	HCH epsilon	76	70		67			
	1873	EPN	76	70			_	 	-		1825	Fluazifop-butvl	30	- 10		_			-		1203	HCH gamma	76	70		67			2
	1744	Epoxiconazole	76	70	76	73	_				2984	Fluazinam	76	70		73					1748	Heptachlo epoxyde exo cis	76	70		20			r i
	1182	EPTC	10	70	70	13	_	_			2022	Fludioxonil	76	70	4	82					1197	Heotachlore	76	70		66			2
	1809	Esfenvalerate	76	70	_	67	-	-			1940	Flufénacet	76	70	4	82			\vdash		1749	Heptachlore époxyde endo	76	70		67			⊢ ' ⊢
	5529	Ethametsulfuron-met	70	70	_	01	-	+	_		6864	Flufénacet ESA	76	10	-	67	-		\vdash		1198	Heptachlore époxyde endo	30	70		67	-		2
			20	70		67	_												\vdash							0/			⊢∸⊢
	2093	Ethephon	30	70	70	67	-	_			6863	Flufénacet OXA	76			67					1910	Heptenophos	30	70		07			\vdash
	1763	Ethidimuron	76	70	76	73	-	-			1676	Flufenoxuron	75	70		73			\vdash		1405	Hexaconazole	76	70		67			\vdash
	5528	Ethiofencarbe sulfone		70	_		-	-	_		2023	Flumioxazine	76	70		67			-		1875	Hexaflumuron	30			67	-		H
	1183	Ethion	30	70		82	_			2	1501	Fluométuron	76	70					\vdash	1	1673	Hexazinone	76	70	4	101			35
PHYTO	1874	Ethiophencarbe	76	70			_	_			7499	Fluopicolide				67			$\overline{}$	HY TO	1876	Hexythiazox	76	70		67			\vdash
1 4	1184	Ethofumésate	76	70	76	101	_			돮	7649	Fluopyram				67				1 4		Hydrazide maleique	75			67			\vdash
	1495	Ethoprophos	76	70		67					5638	Fluoxastrobine	76			73			-		1954	Hydroxyterbuthylazine	76	70	4	73			-
	5527	Ethoxysulfuron		70							2565	Flupyrsulfuron met	46	70		59					1704	Imazalil	76	70		66			$oldsymbol{\sqcup}$
	6601	Ethyleneuree	75			67					2056	Fluquinconazole	30	70							1695	Imazaméthabenz		70		32			$\overline{}$
	5484	Ethyluree	75			67					1974	fluridone	76	70							1911	Imazamethabenz-methyl	76	70		67			$oldsymbol{\sqcup}$
	5625	Etoxazole	45								1675	Flurochloridone	76	70		82					2986	Imazamox	76	70	76	73			$\overline{}$
	5760	Etrimfos	76	70							1765	Fluroxypyr	76		76	67					2090	Imazapyr		70					\square
	5648	ETU	45								2547	Fluroxypyr-meptyl	76			67					2860	Imazaquine	30	70					$\overline{}$
	2020	Famoxadone				67					2024	Flurprimidol		70							7510	Imibenconazole		70					\Box
	5761	Famphur		70							2008	Flurtamone	76	70		67					1877	Imidaclopride	76	70	76	73			
	2057	Fénamidone	46	70		67					1194	Flusilazole	76	70	4	73					5483	Indoxacarbe	46	70					
	1185	Fénarimol	76	70		73					2985	Flutolanil	76	70							2025	Iodofenphos	30	70					\Box
	2742	Fénazaquin	30			67					1503	Flutriafol	76	70	4	73					2563	lodosulfuron	46			67			
	1906	Fenbuconazole	76	70		73					1193	Fluvalinate-tau	30	70		67					6483	iodosulfuron-methyl-sod	76	70		73			
	1186	Fenchlorphos	76	70							7342	fluxapyroxade	45		76	67					1205	loxynil	76	70	76	73			
	2743	Fenhexamid	76			67	1				1192	Folpel	76			101					2871	loxynil methyl ether		70					
	1187	Fénitrothion	76	70		84					1674	Fonofos	76	70							1942	loxynil octanoate	76						\Box
	5627	Fenizon	76	70			1	1			2806	Foramsulfuron	76	70		67					7508	Ipconazole		70					\Box
	5763	Fenobucarb		70							5969	Forchlorfenuron		70							5777	Iprobenfos		70					\Box
	5970	Fenothiocarbe		70				1			1504	Formothion	30			82					1206	Iprodione	76	<u> </u>		67			\vdash
	2061	Fenothrine	76				_	 			5649	Fosamine-ammonium	30								2951	Iprovalicarb	76	70		66			-
	1973	fenoxaprop-ethyl	30	70		20	 	1			1816	Fosetyl	75								1935	Irgarol	76	70		73			-
	5628	Fenoxaprop-P-et	- 30		_	32	_	1			1975	fosetyl-aluminium	75			67					1976	isazofos	30	0					-
	1967	fénoxycarbe	76	70	_	81	 	+			2744	Fosthiazate	75	70		67	\vdash		\vdash		1207	Isodrine	76	70		101			\vdash
\Box	190/	remoxycarbe	/0	70		01				\Box	2144	rosunazate	15	70		0/			oxdot	\perp	120/	isourine	/0	//		101			

ANNEXES

	CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA		CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA		CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA
	1829	Isofenphos	76	70] [1216	Méthabenzthiazuron	76	70		73					1522	Paraquat	30			67			
l L	5781	Isoprocarb		70						Ш	5792	Methacrifos		70							1232	Parathion éthyl	30	70		101			
	1208	Isoproturon	76	70	76	101	10	27	2		1671	Methamidophos	75	70		67					1233	Parathion méthyl	76	70		101			
	1672	Isoxaben	76	70	76	73					1217	Méthidation	76	70							1762	Penconazole	30	70		67			
	2807	Isoxadifen-éthyle		70		73					1218	Méthomyl	76	70		67					1887	Pencycuron	76	70		73			
	1945	Isoxaflutole	76	70		66					1511	Méthoxychlore	76	70							1234	Pendiméthaline	76	70	76	101			
	5784	Isoxathion		70							7716	MetNicosulfuron	30								6394	Penoxsulam	45	70					
	1950	Krésoxym-méthyl	30	70		67					1515	Métobromuron	76	70	76	73					1523	Perméthrine	76	70		67			
	1094	Lambda-cyhalothrine	76	70		67					6854	Metolachlor ESA	76			67	6				1499	Phénamiphos		70					
	1406	Lénacile	76	70	76	73				Ш	6853	Metolachlor OXA	76			67	6				1236	Phenmédiphame				67			
	1209	Linuron	76	70	76	100		35	2		1221	Métolachlore	76	70	76	101		11			5813	Phenthoate	76	70					
	2026	Lufénuron	76			67] [8070	Métolachlore én S	76			67					1525	Phorate	76	70					
	5787	Malaoxon		70							7729	Métolachlore NOA	76			67					1237	Phosalone	30	70		82			
L	1210	Malathion	76	70		101					5796	Metolcarb		70							1971	phosmet	30						
	6399	Mandipropamide	76			67					1912	Métosulame	76	70		66					1238	Phosphamidon		70					
	2745	MCPA-1-butyl ester		70							1222	Métoxuron	76	70		73					1665	Phoxime	76	70		67			
Г	2748	MCPA-ethyl-ester		70						11	5654	Metrafenone	76	70		73					1708	Piclorame	76			67			
	5789	Mecarbam		70							1225	Métribuzine	76	70	4	101			35		5665	Picolinafen	75			82			
Г	1214	Mécoprop	76	70	76	64				11	1944	MetSulcotrione	75			67					2669	Picoxystrobine	76	70		73			
	2750	Mecoprop-1-octyl ester	30	70		67					1797	Metsulfuron méthyle	76	70		73					7057	Pinoxaden	76			73			
	2751	Mecoprop-2,4,4-trim		70							1226	Mévinphos	30	70		84					1709	Piperonyl butoxyde	76	70		81			
	2752	Mecoprop-2-butoxye		70						11	7143	Mexacarbate		70							5819	Piperophos		70					
	2753	Mecoprop-2-ethylhex est		70							5438	mirex	30								5532	Pirimicarb Form. Dm		70					
	2754	Mecoprop-2-octyl ester		70] [6	1707	Molinate	30	70						16	1528	Pirimicarbe	76	70	76	73			
됩	2755	Mecoprop-methyl ester		70] [=	1880	Monocrotophos		70						표	5531	Pirimicarbe Desm		70					
	2870	Mecoprop-n iso-butyl est		70						Ш	1227	Monolinuron	76	70		67					1949	Pretilachlore	76	70					
L	2084	Mécoprop-P	76			64					1228	Monuron	76	70	76	73					1253	Prochloraz	76	70	76	67			
	1968	mefenacet	76	70						Ш	1881	Myclobutanil	76	70		73					1664	Procymidone	30	70		82			
	2930	Méfenpyr diethyl	30	70		82					6384	N,N-Dimethylsulfamide	45								1889	Profenofos	76	70					
	2568	Mefluidide		70] [1516	Naled		70							5668	Prohexadione-ca	30			67			
	5533	Mepanipyrim	30	70						Ш	1519	Napropamide	76	70	76	82					1710	Promécarbe	76	70					
L	5791	Mephosfolan		70							1937	Naptalame	46								1711	Prométone	76	70		32			
L	1969	mepiquat	76			20] [1520	Néburon	76	70		73					1254	Prométryne	76	70	4	73		11	35
	2089	Mépiquat chlorure	76			67				11	1882	Nicosulfuron	76	70	76	73					1712	Propachlore	76	70		67			
L	1878	Mepronil	30	70						11	1669	Norflurazone	76	70		73					6887	Propachlore ESA	30						
	1804	Mercapto sulfoxyde	75			67				Ш	1883	Nuarimol	30	70		66					7736	Propachlore OXA	30						
	1510	Mercaptodiméthur	76	70		86					2027	Ofurace	46	70							6398	Propamocarb	30						
	5840	Merphos		70] [1230	Ométhoate	75	70		67					2988	Propamocarb hcl	30	70		73			
	2578	Mesosulfuron methyle	76	70		73				Ш	1668	Oryzalin	76	70	76	73					1532	Propanil	76	70		73			
	2076	Mésotrione	76	70	4	67]]	2068	Oxadiargyl	30								6964	Propaphos		70					
	1706	Métalaxyl	76	70		82] [1667	Oxadiazon	76	70	76	101					1972	propaquizafop	30	70		73			
	2987	Métalaxyl-M	30			67				Ш	1666	Oxadixyl	76	70	76	101					1255	Propargite	30	70		67			
L	1796	Métaldéhyde	76	70		80	10			11	1850	Oxamyl	76			67					1256	Propazine	76	70	4	101		35	
L	1215	Métamitrone	76	70	76	73				Ш	5510	Oxasulfuron		70							5968	Propazine 2-hydroxy	76	70					
	1670	Métazachlore	76	70	76	73					1231	Oxydéméton-méthyl	75	70		73					1533	Propétamphos	30	70					
L	6895	Métazachlore ESA	76			67				11	1952	Oxyfluorfène	76	70		67					1534	Prophame	76			67			
	6894	Métazachlore OXA	76			67				11	2545	Paclobutrazole	76	70		73					1257	Propiconazole	76	70	76	73			
	1879	Metconazole	76	70	76	73					5806	Paraoxon		70							1535	Propoxur	46	70					

	CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOL!
	5602	Propoxycarbazone-Na	30			67			
	6214	Propylene thiouree	45						
	1414	Propyzamide	76	70	76	81			
	7422	Proquinazid	76	70					
	1092	Prosulfocarbe	76	70	4	81			
	2534	Prosulfuron	76	70		73			
	5603	Prothioconazole	75		76	67			
	7442	Proximpham		70					
	5416	Pymétrozine		70		67			
	6611	Pyraclofos		70					
	2576	Pyraclostrobine	76	70	4	73			
	5509	Pyraflufen-ethyl	30	70		32			
	1258	Pyrazophos	76	70		73			
	6386	Pyrazosulfuron éthyl		70					
	6530	Pyrazoxyfen		70					
	2062	Pyrethrine	30						
	5826	Pyributicarb		70					
	1890	Pyridabène	76	70		82			
	5606	Pyridaphenthion		70					
	1259	Pyridate				73			
	1663	Pyrifenox	76	70		-10			
	1432	Pyriméthanil	76	70		73			
	1260	Pyrimiphos-éthyl	30	70		32			
0	1261	Pyrimiphos-méthyl	76	70		67			_
энуто	5499	Pyriproxyfène	70	70		- 07			
٠.	7340	Pyroxsulam	75	70		73			_
	1891	Quinalphos	76	70		82			
	2087	Quinmerac	76	70	76	73			_
	2028	Quinoxyfen	76	70	70	82			
	1538	Quintozène	76	70		02			
	2069	Quizalofop	46	70					
	2009	Quizalofop éthyl	76	70		73			
	2859	Resmethrine	76						_
	1892	Rimsulfuron	75	70		66			
	2029	Roténone	76	70		66			\vdash
	1923	Sébuthylazine	76	70	76	00			!
	6101	Sebuthylazine 2-hydroxy	76	70	10				
	5981	Sebutylazine desethyl	76	70					-
	1262	Secbuméton	76	70	4	73			35
	1808	Séthoxydime	10	70		13			30
	1893	Siduron	76	70				_	\vdash
	1539	Silvex	46	70					-
	1263	Simazine	76	70	76	101	10	35	38
	1263		/0	70	/0	101	10	35	36
	1831 5477	Simazine-hydroxy	_	70			_		-
		Simétryne							_
	2974	S-Métolachlore	70	70		70	_		_
	2664	Spiroxamine	75	70	76	73			-
	1662	Sulcotrione	76	70	4	73			

	CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA
П	5507	Sulfomethuron-methyl		70					
	2085	Sulfosulfuron	76	70		73			
	1894	Sulfoteo	76	70		82			
	5831	Sulprofos		70					
	1694	Tébuconazole	76	70	76	73			
	1895	Tébufénozide	76	70					
	1896	Tebufenpyrad	30	70		67			
	7511	Tebupirimfos	30	70					
	1661	Tébutame		70		66		11	
	1542	Tébuthiuron	46	70		73			
	5413	Tecnazène		70					
	1897	Téflubenzuron	30	70		66			
	1953	Tefluthrine	76	70		82			
	7086	Tembotrione	75			73			
	1898	Temephos	30						
	1659	Terbacil	46	70					
	1266	Terbuméton	76	70	76	101			37
	1267	Terbuphos	76	70					
	1268	Terbuthylazine	76	70	76	101	10	27	37
	2045	Terbuthylazine désethyl	76	70	76	101	10	8	37
	7150	Terbuthylazine des-2-hydr	46						
	1269	Terbutryne	76	70	4	73			35
	1277	Tétrachlorvinphos	76	70					
ا ع	1660	Tétraconazole	76	70		73			
HYT0	1900	Tétradifon	30	70					
۳	5921	Tetramethrin	46						
	5837	Tetrasul		70					
	1713	Thiabendazole	76	70	76	67			
	5671	Thiacloprid	76	70		73			
	6390	Thiamethoxam	76	70		67			
	1714	Thiazafluron	46						
	7517	Thiencarbazone-methyl				67			
	1913	Thifensulfuron methyl	76	70		72			
	1093	Thiodicarbe		70		67			
	5476	Thiofanox sulfone		70					
	5475	Thiofanox sulfoxyde		70					
	2071	Thiométon	30	70		67			
	1717	Thiophanate-méthyl	75			67			
	5922	Tiocarbazil	46	70					
	5675	Tolclofos-methyl	45	70					
	1719	Tolytfluanide	30						
	1279	Toxaphène	5						
	1658	Tralométhrine	30			67			
	1544	Triadiméfone	76	70		66			
	1280	Triadiménol	76	70		67			
	1281	Triallate	76	70	4	66			
	1914	Triasulfuron	76	70	<u> </u>	32			
				70			_		_

	CodS	Paramètre	AESN	ARS	CD 77	EDP	SEDIF	SUEZ	VEOLIA
	1657	Triazophos	30	70					
	2990	Triazoxide	46						
	2064	Tribenuron-Methyle	30	70		67			
	1287	Trichlorfon		70					
	1720	Trichloronat	30						
	1288	Triclopyr	76	70	76	67			
	2898	Tricyclazole		70					
	1811	Tridémorphe	30			67			
	5842	Trietazine	76	70					
	6102	Trietazine 2-hydroxy	30	70					
	5971	Trietazine desethyl	76	70					
РНУТО	2678	Trifloxystrobine	76	70		73			
£	1902	Triflumuron	76	70					
	1289	Trifluraline	76	70		66		11	
	6799	Triflusulfuron				47			
	2991	Triflusulfuron-met	30	70		66			
	1802	Triforine		70					
	2096	Trinexapac-ethyl	76	70		67			
	2992	Triticonazole	76	70					
	7087	Tritosulfuron				67			
	7482	Uniconazole		70					
	1290	Vamidothion		70					
	1291	Vinclozoline	76			101			
	2858	Zoxamide	76	70		66			
	7074	Dibutyletain cation	74						
	7494	Dioctylétain cation	44						
	7495	Diphényl étain cation	74						
	2542	Monobutylétain	74						
	7496	Monooctylétain cation	74						
STAN	7497	Monophenyletain catio	74						
S.	1936	Tétrabutylétain	44						
	5249	Tétraphénylétain	44						
	2879	Tributyletain cation	74						
	2885	Tricyclohexylétain	30						
	2886	Trioctylétain	44						
	6372	Triphenyletain cation	74						

Fongicide
Insectide/acaricide
Régulateur
Autres
Métabolite

ANNEXE 8: LES 76 PESTICIDES (HORS TRIAZINES) QUANTIFIES DANS LES EAUX SOUTERRAINES EN 2019-2020, LES POURCENTAGES DE QUANTIFICATION* ET LES GAMMES DE CONCENTRATION MESUREES

Herbicide

Fongicide

Insectide/acaricide

Régulateur

Autres

Métabolite

		Par o	rdre alphab	étiqu	e des phytos				Par p	ource	ntage	de qu	antific	cation décroissan	t		
Code	Substance	%	Cmin Cmax	Code	Substance	%	Cmin Cmax	Code	Substance	%	Cmin	Cmax	Code	Substance	%	Cmin (Cmax
S	Substance	quanti	μg/l	S	Substance	quanti	ng/l	S	Substance	quanti	nç	9/1	S	Substance	quanti	ng/l	1
1141	2,4-D	0,4	0,01	1765	Fluroxypyr	0,5	0,008	7727	Dimétachlore CGA	90,9	0,012	0,469	8070	Métolachlore én S	2,1	0,007	0,012
2011	2,6-Dichlorobenzamide	3,5	0,003 0,01	2008	Flurtamone	1,4	0,007 0,008	6854	Metolachlor ESA	78,5	0,012	1,2	1414	Propyzamide	2,0	0,006	0,072
5579	Acetamiprid	0,9	0,009 0,015	1194	Flusilazole	1,8	0,002 0,005	7729	Métolachlore NOA	62,2	0,022	0,68	1208	Isoproturon	2,0	0,002	0,011
6800	Alachlor ESA	11,9	0,02 0,11	1503	Flutriafol	4,6	0,002 0,049	1133	Chloridazone	61,5	0,002	0,038	1403	Diméthomorphe	1,9	1,111	0,003
1101	Alachlore	0,3	0,016	1506	- 71	0,3	0,036 0,036	6895	Métazachlore ESA	59,4	0,01	0,353	1405	Hexaconazole	1,9	1711	0,004
1105	Aminotriazole	3,3	0,02 0,05	1202		0,5	0,008	1666	Oxadixyl	49,5	0,002	0,177	1194	Flusilazole	1,8	1711	0,005
1907	AMPA	0,3	0,365	1203	HCH gamma	0,5	0,001	6381	Dimétachlore-ESA	44,8	0,005	0,094	1256	Propazine	1,8	_	0,01
1113	Bentazone	37,8	0,002 0,173	1405	Hexaconazole	1,9	0,002 0,004	1113	Bentazone	37,8	0,002	0,173	1119	Bifénox	1,5	1,11	0,007
1119	Bifénox	1,5	0,004 0,007	1673	Hexazinone	13,5	0,002 0,006	6894	Métazachlore OXA	32,9	0,01	0,253	2008	Flurtamone	1,4	_	0,008
1584	Biphényle	0,4	0,062	1911	Imazamethabenz-met	0,5	0,008	1670	Métazachlore	30,9	0,002	0,056	6380	Dimétachlore-OXA	1,4	171	0,015
5526	Boscalid	28,7	0,002 0,024	2986	Imazamox	0,3	0,006	5526	Boscalid	28,7	0,002	0,024	6863	Flufénacet OXA	1,4	.,	0,014
1686	Bromacil	1,0	0,003 0,007	1877	Imidaclopride	0,3	0,01	1763	Ethidimuron	25,8	0,002	0,056	1257	Propiconazole	1,4	0,00	14
1530	Bromure de méthyle	2,2	0,04 0,05	1208	Isoproturon	2,0	0,002 0,011	1744	Epoxiconazole	25,1	0,002	0,022	7717	Chlorothalonil SA	1,3	1,1	
1129	Carbendazime	2,3	0,002 0,032	1406	Lénacile	3,8	0,005 0,028	1221	Métolachlore	19,7	0,006	0,096	1796	Métaldéhyde	1,3	171 1	0,06
1133	Chloridazone	61,5	0,002 0,038	1706	Métalaxyl	0,4	0,003	1542	Tébuthiuron	17,5	0,002	0,04	1184	Ethofumésate	1,3	1,111	0,02
7717	Chlorothalonil SA	1,3	1,1	1796	Métaldéhyde	1,3	0,026 0,06	5617	Dimethenamid-P	14,7	0,002	0,012	2087	Quinmerac	1,0	171	0,021
1136	Chlortoluron	13,4	0,002 0,091	1215	Métamitrone	0,3	0,009	1673	Hexazinone	13,5	0,002	0,006	1686	Bromacil	1,0	0,003	0,007
6389	Clothianidine	0,5	0,005	1670	Métazachlore	30,9	0,002 0,056	6853	Metolachlor OXA	13,4	0,006	0,093	5579	Acetamiprid	0,9	0,009	0,015
1139	Cymoxanil	0,5	0,04	6895	Métazachlore ESA	59,4	0,01 0,353	1136	Chlortoluron	13,4	0,002	0,091	1797	Metsulfuron mét	0,9	.,	0,004
1680	Cyproconazole	3,1	0,003 0,026	6894	Métazachlore OXA	32,9	0,01 0,253	6800	Alachlor ESA	11,9	0,02	0,11	6865	Diméthénamide ESA	0,7	0,01	1
1814	Diflufenicanil	2,7	0,002 0,063	6854	Metolachlor ESA	78,5	0,012 1,2	2546	Dimétachlore	9,7	0,002	0,016	1972	propaquizafop	0,6	0,01	
1870	Dimefuron	2,8	0,002 0,006	6853	Metolachlor OXA	13,4	0,006 0,093	1940	Flufénacet	9,6	0,002	0,069	1139	Cymoxanil	0,5	0,04	
2546	Dimétachlore	9,7	0,002 0,016	1221	Métolachlore	19,7	0,006 0,096	1678	Dimethenamide	8,8	0,002	0,012	6389	Clothianidine	0,5	0,00	
7727	Dimétachlore CGA	90,9	0,012 0,469	8070	Métolachlore én S	2,1	0,007 0,012	1503	Flutriafol	4,6	0,002	0,049	1911	Imazamethabenz-met	0,5	0,00	
6381	Dimétachlore-ESA	44,8	0,005 0,094	7729	Métolachlore NOA	62,2	0,022 0,68	1714	Thiazafluron	4,3	0,004	0,005	1765	Fluroxypyr	0,5	0,00	18
6380	Dimétachlore-OXA	1,4	0,01 0,015	1225	Métribuzine	3,5	0,002 0,012	1406	Lénacile	3,8	0,005	0,028	1202	HCH delta	0,5	0,00	18
1678	Dimethenamide	8,8	0,002 0,012	1797	Metsulfuron méthyle	0,9	0,003 0,004	1225	Métribuzine	3,5	0,002	0,012	1203	HCH gamma	0,5	0,00	11
6865	Diméthénamide ESA	0,7	0,01 0,01	1519	Napropamide	0,3	0,029	2011	2,6-Dichlorobenzamid	3,5	0,003	0,01	1092	Prosulfocarbe	0,4	0,00	
5617	Dimethenamid-P	14,7	0,002 0,012	1666		49,5	0,002 0,177	1105	Aminotriazole	3,3	0,02	0,05	1706	Métalaxyl	0,4	0,00	
1403	Diméthomorphe	1,9	0,002 0,003	1972	propaquizafop	0,6	0,011	5628	Fenoxaprop-P-ethyl	3,1	0,011	0,011	1584	Biphényle	0,4	0,06	12
1177	Diuron	2,2	0,003 0,022	1256	Propazine	1,8	0,006 0,01	1680	Cyproconazole	3,1	0,003	0,026	1141	2,4-D	0,4	0,01	1
1744	Epoxiconazole	25,1	0,002 0,022	1257	Propiconazole	1,4	0,004	1694	Tébuconazole	3,1	0,005	0,018	2986	Imazamox	0,3	0,00	16
1763	Ethidimuron	25,8	0,002 0,056	1414	Propyzamide	2,0	0,006 0,072	1870	Dimefuron	2,8	0,002	0,006	1877	Imidaclopride	0,3	0,01	1
1184	Ethofumésate	1,3	0,008 0,02	1092	Prosulfocarbe	0,4	0,006	1814	Diflufenicanil	2,7	0,002	0,063	1215	Métamitrone	0,3	0,00	
5628	Fenoxaprop-P-ethyl	3,1	0,011	2087	Quinmerac	1,0	0,01 0,021	1129	Carbendazime	2,3	0,002	0,032	1519	Napropamide	0,3	0,02	
1940	Flufénacet	9,6	0,002 0,069	1694	Tébuconazole	3,1	0,005 0,018	1530	Bromure de méthyle	2,2	0,04	0,05	1907	AMPA	0,3	0,36	i5
6864	Flufénacet ESA	2,1	0,01 0,039	1542	Tébuthiuron	17,5	0,002 0,04	1177	Diuron	2,2	0,003	0,022	1506	Glyphosate	0,3	0,03	16
6863	Flufénacet OXA	1.4	0.007 0.014	1714	Thiazafluron	4,3	0,004 0,005	6864	Flufénacet ESA	2,1	0,01	0,039	1101	Alachlore	0,3	0.01	6

^{*} calcul du pourcentage de quantification : rapport entre le nombre total de quantifications aux captages et le nombre total de recherches

NB: Les acaricides ont été classés comme insecticide. La classe *Autres* regroupe les usages rodenticides, nématicides, molluscides, antimousse, adjuvants et complexes. En gras, les pesticides homologués en 2020.

ANNEXE 9: LES 80 PESTICIDES LES PLUS VENDUS SUR LE TERRITOIRE D'AQUI'BRIE EN 2020

Par ordre alphabétique des substances

Par quantités vendues décroissantes

CdS	Nom	Ventes 2020 (kg)	Date Auto	Date Inter	CdS	Nom	Ventes 2020 (kg)	Date Auto	Date Inter	CdS	Nom	Ventes 2020 (kg)	Date Auto	Date Inter	CdS	Nom	Ventes 2020 (kg)	Date Auto	Date Inter
	2,4-D	2398	1952		5645	7	639	1975			Prosulfocarbe	73173	1988		2988		1252	1982	
_	2,4-MCPA	3540	1958		5646	,	380	1983			Glyphosate	61205	1975		-	Napropamide	1164	1971	
1688	Aclonifène	5070	1984		1094	Lambda-cyhalothrine	433	1986		1136	Chlortoluron	18028	1971		2664	Spiroxamine	1152	1998	
1951	Azoxystrobine	3165	1997		1406	Lénacile	1536	1965		8070	S métolachlore	16646	1998		1879	Metconazole	1149	1993	
2074	Benoxacor	409	1990		1211	Mancozèbe	3756	1963		1215	Métamitrone	16138	1975		2022	Fludioxonil	1129	1993	
1113	Bentazone	918	1972		2930	Méfenpyr diethyl	457	2001		2097	Chloroméquat chlorure	15341	1975		2076	Mésotrione	1092	2001	
8042	Benzovindiflupyr	504	2018		8686	Mefentrifluconazole	383	2019		1234	Pendiméthaline	15076	1975		1140	Cyperméthrine	1014	1979	
7345	Bixafen	393	2011		2089	Mépiquat chlorure	3235	1981		1414	Propyzamide	9493	1970		7649	Fluopyram	1010	2013	
1125	Bromoxynil	374	1970		2076	Mésotrione	1092	2001		1473	Chlorothalonil	8955	1976	2020	1113	Bentazone	918	1972	
1860	Bromuconazole	475	1992		1796	Métaldéhyde	1763	1952		1940	Flufénacet	8245	1997		1193	Fluvalinate-tau	899	1985	
1133	Chloridazone	712	1963	2020	1215	Métamitrone	16138	1975		1253	Prochloraz	6876	1980		6393	Flonicamid	866	2005	
2097	Chloroméquat chlorure	15341	1975		1670	Métazachlore	5007	1982		1694	Tébuconazole	6686	1988		7057	Pinoxaden	847	2010	
1473	Chlorothalonil	8955	1976	2020	1879	Metconazole	1149	1993		5617	Dimethenamid-P	6265	2001		1528	Pirimicarbe	821	1972	
1540	Chlorpyriphos-méthyl	474	1975		1515	Métobromuron	685	1966		1814	Diflufenicanil	6212	1986		1133	Chloridazone	712	1963	2020
1136	Chlortoluron	18028	1971		1519	Napropamide	1164	1971		1700	Fenpropidine	5367	1987		1515	Métobromuron	685	1966	
2978	Clethodim	2440	1995		1234	Pendiméthaline	15076	1975		5603	Prothioconazole	5083	2006		1480	Dicamba	675	1963	
2017	Clomazone	650	1990		1236	Phenmédiphame	4919	1968		1688	Aclonifène	5070	1984		2017	Clomazone	650	1990	
1810	Clopyralide	456	1977		1971	Phosmet	4151	1966	2022	1670	Métazachlore	5007	1982		5645	Hydrazide maleique	639	1975	
2018	Cloquintocet-mexyl	426	1993		7057	Pinoxaden	847	2010		1236	Phenmédiphame	4919	1968		2544	Dichlorprop-P	626	1988	
1140	Cyperméthrine	1014	1979		1528	Pirimicarbe	821	1972		1971	Phosmet	4151	1966	2022	2096	Trinexapac-ethyl	608	1991	
1359	Cyprodinil	2257	1993		1253	Prochloraz	6876	1980		1211	Mancozèbe	3756	1963		2991	Triflusulfuron-methyl	604	1993	
2980	Desmediphame	1384	1987	2020	2988	Propamocarb hcl	1252	1982		1184	Ethofumésate	3622	1974		1268	Terbuthylazine	587	1971	
1480	Dicamba	675	1963		1414	Propyzamide	9493	1970		1212	2,4-MCPA	3540	1958		2678	Trifloxystrobine	512	2001	
2544	Dichlorprop-P	626	1988		1092		73173	1988		1281	Triallate	3389	1969		8042	Benzovindiflupyr	504	2018	
1905	Difénoconazole	3018	1989		5603	Prothioconazole	5083	2006		2089	Mépiquat chlorure	3235	1981		1860	Bromuconazole	475	1992	
1814	Diflufenicanil	6212	1986		2576	Pvraclostrobine	1326	2002		1951	Azoxystrobine	3165	1997		1540	Chlorpyriphos-méthyl	474	1975	
2546	Dimétachlore	413	1977		2087	Quinmerac	1812	1993		2093	Ethephon	3084	1975		2930	Méfenpyr diethyl	457	2001	
5617	Dimethenamid-P	6265	2001		8070	S métolachlore	16646	1998		1905	Difénoconazole	3018	1989		1810		456	1977	
2093	Ethephon	3084	1975		7724	Sedaxane	1744	2011		2978	Clethodim	2440	1995		1660	Tétraconazole	450	1992	
1184	Ethofumésate	3622	1974		5609	Silthiopham	364	2002		1141	2,4-D	2398	1952		1094	Lambda-cyhalothrine	433	1986	
1700	Fenpropidine	5367	1987		2664	Spiroxamine	1152	1998		1953		2378	1989		1675	Flurochloridone	428	1984	
6393	Flonicamid	866	2005		1694	Tébuconazole	6686	1988		1359	-71	2257	1993		2018	Cloquintocet-mexyl	426	1993	
2022	Fludioxonil	1129	1993		1953	Tefluthrine	2378	1989		2087	Quinmerac	1812	1993		2546	Dimétachlore	413	1977	
1940	Flufénacet	8245	1997		1268	,	587	1971		1796		1763	1952		2074	Benoxacor	409	1990	
7649	Fluopyram	1010	2013		1660	Tétraconazole	450	1992		7724		1744	2011		1717	Thiophanate-méthyl	405	1970	2021
	Flurochloridone	428	1984		1717		405	1970	2021		Fluroxypyr	1643	1999		7345	Bixafen	393	2011	ш
1765	Fluroxypyr	1643	1999	\vdash	1281	Triallate	3389	1969	\vdash		Lénacile	1536	1965	\mathbf{H}	8686	Mefentrifluconazole	383 380	2019	\vdash
1193 7342	Fluvalinate-tau	899 1425	1985 2011	\vdash	2678 2991		512 604	2001 1993	\vdash	7342		1425 1384	2011 1987	2020	5646	Hymexazol	380	1983	\vdash
_	fluxapyroxade Glyphosate	61205	1975	\vdash	2991	Triflusulfuron-methyl Trinexapac-ethyl	608	1993	$\vdash\vdash$		Desmediphame Pyraclostrobine	1384	2002	2020		Bromoxynil Silthiopham	364	2002	\vdash
1000	Giypriosate	01205	19/5		2090	ттпехарас-еспут	000	ופטו	\Box	25/6	Fyraciostropine	1320	2002		2009	Siluilopriairi	J04	2002	

Herbicide
Fongicide
Insectide/acaricide
Régulateur
Autres

ANNEXE 10 : GLOSSAIRE

60

AQUIFERE

Formation géologique perméable permettant le stockage et l'écoulement significatif d'une nappe d'eau souterraine.

BASSIN VERSANT

Surface drainée par un cours d'eau et ses affluents, délimitée par une ligne de relief ou de partage des eaux.

CHLORATION

Adjonction de chlore à l'eau pour en assurer la désinfection et empêcher la prolifération ultérieure de microorganismes.

DRAINAGE

Elimination des eaux en excès dans le sol par rigoles, fossés ou tuyaux perforés enterrés.

DRAINANCE

Echange entre deux couches aquifères à travers une couche semiimperméable intercalée. On parle de drainance entre la nappe superficielle de Brie et la nappe du Champigny.

EAU BRUTE

Eau n'ayant pas subi de traitement physique ou chimique (par opposition à l'eau distribuée, après traitement).

ETIAGE

Période correspondant aux faibles débits pour les cours d'eau et au bas niveau pour les aquifères.

EVAPOTRANSPIRATION

Elle correspond à la quantité d'eau totale transférée du sol vers l'atmosphère par l'évaporation au niveau du sol et par la transpiration des plantes. Elle est exprimée en mm.

GOUFFRI

Forme du modelé karstique, dépression de taille variable issue de la dissolution des calcaires en surface et pouvant permettre l'infiltration rapide d'eau vers la profondeur.

GYPSE

Sulfate de calcium hydraté : CaSO4, 2 H2O, minéral fréquent dans les roches sédimentaires et notamment les marnes vertes et supragypseuses qui recouvrent les calcaires de Champigny. Les eaux circulant sur ce minéral relativement soluble le dissolvent et se chargent en ions sulfate et calcium.

INFILTRATION EFFICACE

Alimentation des aquifères par déplacement de l'eau de pluie de la surface à la zone saturée, moins l'eau stockée dans le sol ou utilisée par les plantes. Elle s'exprime en lame d'eau annuelle (en mm) ou en débit moyen annuel rapporté au km² (l/s/km²).

KARST

Région de Yougoslavie où le modelé karstique a été décrit en premier. Type de relief affectant les pays calcaires et principalement dû à la dissolution de leurs roches par l'eau de pluie. Dans ce type de sous-sol, les eaux de ruissellement pénètrent très facilement et ne subissent de ce fait aucune filtration efficace. La nappe des calcaires de Champigny est un aquifère localement karstifié.

LAME D'EAU

Hauteur d'eau sur une surface unitaire, exprimée en mm.

LESSIVAGE

Entraînement des éléments solubles du sol par les eaux d'infiltration qui provoque un appauvrissement de certaines couches du sol.

MARNES

Roches sédimentaires constituées d'un mélange de calcaires et d'argiles (entre 35 et 65%). Les marnes forment la transition entre les calcaires argileux (moins de 35% d'argiles) et les argiles calcareuses (65 à 95 % d'argiles). Les marnes sont peu perméables.

MICROGRAMME PAR LITRE (ou µg/L)

Unité de concentration utilisée pour les pesticides et les éléments traces. 1 μ g/l = 10⁻⁶ g/l = 0,000001 g/l.

NITRATES

Sels de l'acide nitrique. Les nitrates contenus dans l'eau peuvent provenir des engrais appliqués par le monde agricole ou de la minéralisation naturelle des sols, des rejets domestiques, etc.

PESTICIDES

Vient du mot latin Pestis (le fléau en général, et une maladie dangereuse en particulier). Les pesticides sont des substances ou des préparations utilisées pour la prévention, le contrôle ou l'élimination d'organismes jugés indésirables, qu'il s'agisse de plantes, d'animaux, de champignons ou de bactéries. Dans le langage courant le terme pesticide est souvent associé à

un usage agricole, or le terme générique englobe les usages domestiques, urbains, de voirie... Parmi les pesticides, les herbicides luttent contre les « mauvaises » herbes, les fongicides contre les champignons, et ainsi de suite pour les insecticides, acaricides, rodenticides, molluscicides, avicides, piscicides... Le terme de pesticide n'a pas de définition réglementaire. La Communauté Européenne emploie le terme de biocide, qui est plus général que le terme de pesticide, et englobe les produits destinés à l'hygiène humaine et vétérinaire, les désinfectants. Les pesticides utilisés en agriculture, pour protéger les végétaux ou contrôler leur croissance, sont appelés par la profession produits phytosanitaires ou phytopharmaceutiques.

PIEZOMETRIE

Mesure du niveau auquel monte l'eau d'une nappe dans un forage. Elle est exprimée soit en profondeur par rapport au sol, soit en altitude par rapport au niveau de la mer (NGF).

PIEZOMETRE

Forage servant au suivi du niveau de la nappe.

PLUVIOMETRIE

Mesure de la quantité de pluie tombée en un temps donné, exprimée comme une lame d'eau, en millimètres.

RECHARGE ESTIMES

Dans le cadre de ce tableau de bord et de cette nappe qui se recharge en partie par des pertes en rivière, nous entendons par recharge estimée la somme de l'infiltration efficace et du ruissellement, tous les deux issus d'un calcul.

RELIQUAT

La différence entre REH et RSH est un indicateur de la perte d'azote hivernal par lessivage.

RELIQUAT POST- RÉCOLTE (RPR)

Analyse de la quantité de l'azote minéral du sol après récolte (août). C'est un indicateur d'azote disponible dans les sols de nouveau à nu et potentiellement lessivable en cas de pluie en septembre. Le semis d'une interculture permet de piéger ce surplus d'azote.

RELIQUAT ENTRÉE-HIVER (REH)

Analyse de la quantité de l'azote minéral du sol à la fin de la minéralisation automnale et avant le début de la période de lessivage intense (novembre). C'est un indicateur de la quantité d'azote potentiellement lessivable entre cette date et le début de la reprise de végétation.

RELIQUAT SORTIE-HIVER (RSH)

Analyse de la quantité d'azote minéral du sol à l'issue de la période de lessivage intense et avant la minéralisation printanière. C'est un indicateur de la quantité d'azote du sol potentiellement disponible pour la culture et à prendre en compte dans le bilan de fertilisation.

RUISSELLEMENT

Ecoulement superficiel des eaux pluviales, se rendant directement aux thalwegs sans passer par l'intermédiaire des sources ou des drains.

SELENIUM

Elément d'origine naturelle, oligoélément essentiel pour l'homme à faible dose, mais toxique à forte dose.

SYSTEME D'EVALUATION DE LA QUALITE (SEQ)

Outil mis en place par les Agences de l'Eau et le ministère de l'écologie et du développement durable pour évaluer la qualité des eaux selon leurs usages (AEP, abreuvage, état patrimonial, etc).

TARISSEMENT

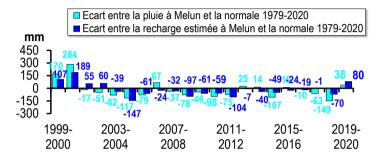
Terme hydrogéologique désignant la phase de décroissance régulière du débit d'une source ou de baisse régulière du niveau d'un forage en l'absence de tout apport météorique et d'intervention humaine.

TRIAZINES

Famille de matières actives herbicides peu solubles, stables chimiquement et assez fortement adsorbées sur le Complexe argilo-humique du sol. Elles agissent par inhibition de la photosynthèse. Les plus connues sont l'atrazine, la métamitrone, la terbuthylazine. L'atrazine et son principal produit de dégradation la déséthylatrazine sont mesurées en toutes saisons dans les eaux de la nappe des calcaires de Champigny. Ces molécules constituent une pollution de fond de la nappe.

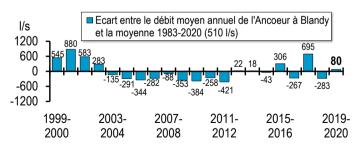
UREES SUBSTITUEES

Famille de matières actives herbicides peu solubles et assez persistantes. Ces matières actives sont utilisées dans le monde agricole (chlortoluron isoproturon, linuron, diuron) et non agricole (Diuron). Elles sont détectées plus ponctuellement que l'atrazine.

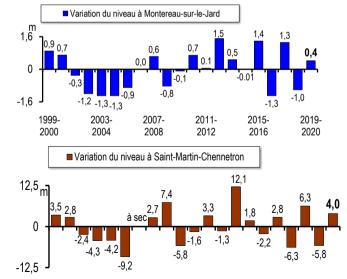

ZONE SATUREE

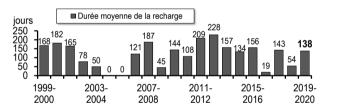
Zone de l'aquifère dans laquelle l'eau occupe complètement les interstices de la roche (par opposition à la zone non saturée située plus haut).

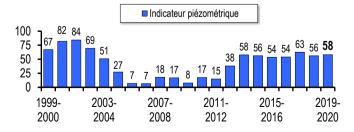
ANNEXE 11: EVOLUTION DES INDICATEURS DE 1999 - 2000 A 2019 - 2020 (GRAPHIQUES)

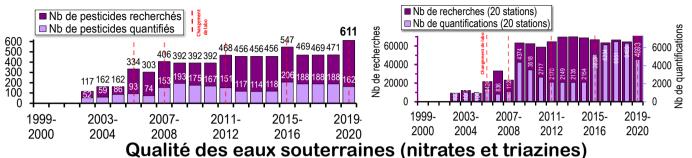

Pluviométrie

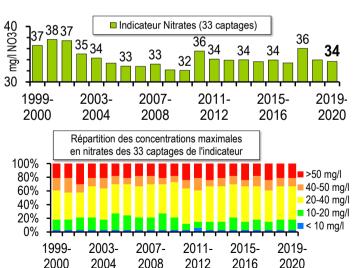
Débit des rivières (Ancoeur)

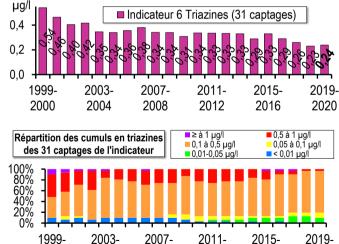



Débit des rivières (Yerres)

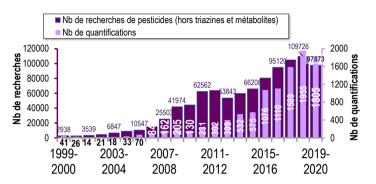


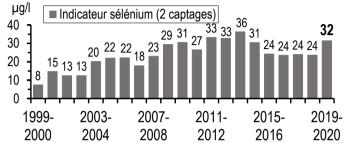

Piézométrie

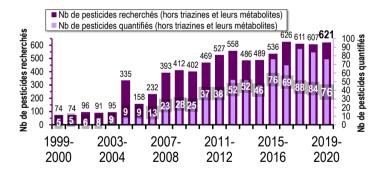




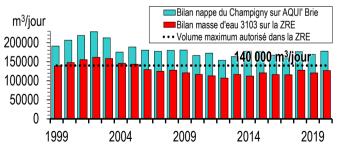
Qualité des eaux de surface

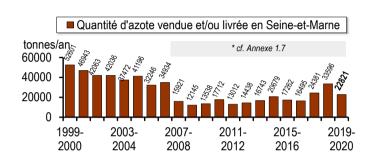


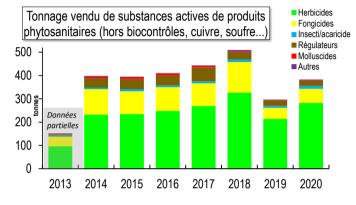




Qualité des eaux souterraines (pesticides hors triazines et sélénium)







Pression des prélèvements

Pression azotée et phytosanitaires

Du 01/10 au 30/09	1999- 2000	2000- 2001	2001- 2002	2002-	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	2009- 2010	2010- 2011	2011- 2012	2012- 2013	2013- 2014	2014- 2015	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020
	Pluviométrie																				
Pluviométrie moyenne annuelle* sur le territoire (mm)	884	1105	700	674	656	624	656	765	671	588	734	630	692	760	806	663	789	721	755	644	754
Ecart entre la pluie à Melun de l'année et la normale 1979-2020	170	284	-17	-51	-82	-117	-79	67	-37	-78	-46	-98	-75	25	14	-107	10	-10	-63	-149	38
Recharge estimée moyenne* sur le territoire (mm)	364	464	264	243	153	72	144	180	172	97	184	174	125	226	245	176	249	182	308	160	313
Ecart entre la recharge estimée à Melun et la normale 1979-2020	107	189	55	60	-39	-147	-61	-24	-32	-97	-61	-59	-104	-7	-40	-49	-24	-19	-1	-70	80
Débit des rivières																					
Débit moyen annuel de l'Yerres à Courtomer (l/s)	2377	4108	2796	1585	788	224	356	960	1204	319	622	1125	588	1616	1489	1666	2 518	639	3302	1005	1437
Ecart entre le débit moy annuel de l'Yerres à Courtomer et la moyenne 1983-2020 (1437 l/s)	940	2671	1359	148	-649	-1213	-1081	-477	-233	-1118	-832	-312	-849	179	52	229	1081	-798	1865	-432	570
()							Nive	au de l	a napp	e du Cl	hampig	ny									
Variation du niveau à Montereau- sur-le-Jard (m)	0,9	0,7	-0,3	-1,2	-1,3	-1,3	-0,9	0	0,6	-0,8	-0,1	0,7	0,1	1,5	0,5	0,0	1,4	-1,3	1,3	-1,0	0,4
Variation du niveau à Saint-Martin- Chennetron (m)	3,5	2,8	-2,4	-4,3	-4,2	-9,2	à sec	2,7	7,3	-5,8	-1,6	3,3	-1,3	12,1	1,8	-2,2	2,8	-6,3	6,3	-5,8	4,0
Durée moyenne de la recharge (jours)	168	182	165	78	50	nulle	nulle	121	187	45	144	108	209	228	157	134	156	19	143	54	138
Indicateur piézométrique	67	82	84	69	51	27	7	7	18	17	8	17	15	38	58	56	54	54	63	56	58
Qualité des eaux superficielles																					
Nombre de pesticides quantifiés / recherchés				52/ 117	59/ 162	86/ 162	93/ 334	74/ 303	153/ 406	193/ 392	175/ 392	167/ 392	151/ 468	117/ 456	114/ 456	118/ 456	206/ 547	188/ 469	188/ 469	188/ 471	162/ 611

Du 01/10 au 30/09	1999- 2000	2000- 2001	2001-	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	2009- 2010	2010- 2011	2011- 2012	2012- 2013	2013- 2014	2014- 2015	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020
							Qı	ualité d	es eau	x soute	rraines	3									
Moyenne des concentrations en nitrates sur 33 captages* (mg/l NO3)	37	38	37	35	34	33	33	33	33	32	32	36	34	34	34	34	34	33	36	34	33,7
Moyenne des conc. en 6 triazines sur 31 captages* (µg/l)	0,54	0,46	0,4	0,42	0,35	0,34	0,36	0,38	0,34	0,34	0,31	0,34	0,33	0,33	0,33	0,29	0,33	0,29	0,26	0,23	0,24
Nombre de pesticides (hors 6 triazines et leurs métabolites.) quantifiés/recherchés	5/ 74	5/74	5/ 93	8/ 91	10/ 95	8/ 340	9/ 158	13/ 238	23/ 401	25/ 417	24/ 447	34/ 498	36/ 533	55/ 562	53/ 490	51/ 493	78/ 542	72/ 635	88/ 616	87/ 610	76/ 621
Nombre de quantifications/recherches unitaires de pesticides (hors triazines)	41 / 2943	26 / 2761	14 / 3383	20 / 4477	18 / 6677	33 / 8926	70 / 10371	84 / 15119	162 / 25485	205 / 39588	130 / 36729	215 / 60 545	287 / 62 462	406 / 53 801	537/ 60271	613/ 73744	1102/ 82 373	1133/ 94 618	1579/ 104897	1 960/ 110723	1 805/ 97873
Indicateur Sélénium sur 2 captages (µg/l Se)	7,5	14,8	12,5	12,5	20,2	22	22,3	17,9	23,1	29,4	30,6	26,6	33,3	32,8	36,4	30,5	24,3	23,6	24	24	31,5
Pression azotée																					
Quantité d'azote vendue et/ou livrée en 77 (tonnes)	52600	46943	42063	42036	37 472	41196	32246	34934	15921	12145	13538	17 712	13 012				17262	16 495	24 381	33 596	22 821
, ,	(Voir Annexe 1.7) Quantité d'azote estimée lessivée par drainage due au reliquat																				
En kg N/ha	22	52	46	23,5	11,4	0	9,7	22	38,2	19,6	14,7	18,5	20,6	40,8	25	23	44	23	53		
En mg NO3/I de la lame drainée	57	55	63	56	93,5	0	105	86	76	88	74	62	101	81	50	53	95	113	47		
Lame d'eau drainée estimée	170	420	320	185	53	2	41	112	223	99	89	91	91	223	225	192	199	88	491		
							Press	ion Pe	sticides	s (en ar	nnée ci	vile)									
Tonnes vendues sur AQUI' Brie (hors biocontrôles, Cu, fer)														152	398	395	411	444	510	297	383
Nb des substances phytosanitaires vendues sur AQUI' Brie (hors biocontrôles, Cu, fer)														727	246	242	243	236	231	228	210
	Pression des prélèvements (en année civile)																				
Prélèvement journalier moyen sur le territoire d'AQUI' Brie (m3/jr)	206539	218870	228795	212707	175348	188684	180503	177108	179784	180709	166471	172639	153726	163393	177365	176855	167245	159854	176172	169284	177802

ANNEXE 13 : ORGANISMES PRODUCTEURS DE DONNÉES

Météo France (MF): Pluviométrie. ETP

Banque Hydro, ICPE (DRIEAT):

Débit et hauteur des cours d'eau

Agence de l'Eau Seine Normandie (AESN) :

Nitrates, sélénium, pesticides, autres micropolluants organiques dans les eaux de surfaces et les eaux souterraines, prélèvements

Agence Régionale de Santé :

Nitrates, sélénium, pesticides, autres micropolluants organiques

Département de Seine-et-Marne (Dépt 77) :

Piézométrie, nitrates, sélénium, pesticides, autres micropolluants organiques (eaux de surface et souterraines)

Bureau des Recherches Géologiques et Minières (BRGM):

Piézométrie

Fau du Sud Parisien:

DU SUD Piézométrie, nitrates, sélénium, pesticides, autres PARISIEN micropolluants organiques

Eau de Paris (EDP):

Nitrates, sélénium, pesticides, autres micropolluants organiques, pluviométrie

Syndicat des Eaux d'Ile- de- France (SEDIF) :

Nitrates, pesticides

Veolia:

Nitrates, pesticides

OFB, Office français de la Biodiversité

Ventes des pesticides au code postal de l'acheteur (BNV-d)

Union des Industries de la Fertilisation (UNIFA) :

Livraisons départementales de fertilisants azotés minéraux

Cet ouvrage a été réalisé grâce au concours financier de